THE POST OPPICE ELECTRICAL ENGINEERS' JOURNAL

The
 LONDON ELECTRIC WIRE CO. and SMITHS, LTD.

Manufacturers of

Every Description of Cables and - Wires for Electrical Purposes -

Cotton-Coveral and braided Wires. Cotom-Coveral Strip- and fables silk-Covered and Enamel Insulated Nires. Multiple Cables. Flexibl Cords. Cables and Flexibles for Wireless Work.
"Eureka," Nickelchrome and other High Resistance Wires. Playhouse Yard, Golden Lane, London, E.C.1.

Telegrams: " Ellertyic, Lomblon.' Felèhour : Clerkemreil 1:iss, $1369,1390,1391$

Pitman's Books for Engineers and Students.

ELEMENTARY TELEGRAPHY.

By U. W. Penver. secomt Elition. ppeially writen for candidatesfor C. \& G. I. Examina tions. 1.99 Illusirations. 7 s .6 d . Het.

TELEGRAPHY

TELEPHONY.
By the same duthot. This wark antains full infornation resarding the Tefphore Ststemz and

AUTOMATIC TELEPHONES.

 parses. dis Illustmations. 5s. net,
THE PRACTICAL TELEPHONE HANDBOOK AND GUIDE TO THE TELEPHONE EXCHANGE.

 15s. net.
ARITHMETIC OF TELEGRAPHY AND TESEPHONY.

 diaurams. 5 s . net
RADIO COMMUNICATION, MODERN.
 of modern throry ind pratice, covering the syliabs of the Uity and Culde Examinationand suilable for camdidatos for the J'M.G. roxtificate. Second bidition, thoronginly revised. 220 faises. 121 lihnstiarions 5 s . het
THE BAUDOT PRINTING TELEGRAPH SYSTEM.
By H. W. Pfonnt. Secoul Eaition. With 7 ? illustrations of the lainst moriels. Gs. not.

[^0]
A.T.M .

GULSTAD RELAY CABLE PATTERN

 THIS pattern relay has been developed for specially difficult lines and submarine cables.The adjustment of the contact carriage and the relation of the electro-

```
SEND TO-DAY
    FOR
    CATALOGUE
        No. 39.
``` magnet cores to the armature system is of wide range and can be made in minute steps.

The frame in which the coils slide is very rigid and the relay is not susceptible to extraneous vibations.

\section*{AUTOMATIC TELEPHONE}

\section*{MANUFACTURING CO., LTD.}

Head Office and Works:
MILTON ROAD,
EDGE LANE,
LIVERPOOL.

London Office :
NORFOLK HOUSE,
NORFOLK STREET,
STRAND, W.C. 2

\title{
The Post Office Electrical Engineers' Journal.
}

\author{
A QUARTERLY JOURNAL.
}

\section*{CONTENTS FOR JULY, 1926.}

\begin{abstract}
COPYRIGHT.--The entire contents of this Journal are covered by general copyright, and special permission is necessary for reprinting long extracts, but Editors are welcome to use not more than one third of any article, provided credit is given at the beginning or end thus: "From the 'Post Office Electrical Engineers' Journal.'
\end{abstract}
PAGE:
SIMPLEX WORKING ON FAST SPEED REPEATERS IOI
THE LONDON—GLASGOW TRUNK TELEPHONE CABLE AND ITS
REPEATER STATIONS 103
LONDON—BERLIN TELEPHONE CIRCUIT 1.48
AUTOMATIC TELEPHONE EXCHANGES IN AMSTERDAM. MAINTEN- ANCE EXPERIENCE-I) 1 . Ir. (..... 153
TIME SAVING TESTERS FOR AUTOMATIC EXCHANGES—W. Prickett and H. S. Smith 174
TELEGRAPH AND TELEPHONE PLANT IN THE UNITED KINGDOM I78
A NEW TYPE OF FUSE MOUNTING FOR THE TERMINATION OFTRUNK, JUNCTION AND TELEGRAPH CIRCUITS-A. O. Gibbon,M.I.E.E.179
THE PASSING OF BLACKFRIARS POWER STATION 185
THE TRAINING OF OFFICERS OF THE BRITISH POST OFFICEENGINEERING DEPARTMENT IN PRECISION TESTING OFUNDERGROUND CABLES—A. B. Morıюと, B.Sc.(Eng.), A.M.I.E.E., and1. Morris, A.R.C.S., A.M.I.E.E..
ACCIDENTS ON DUTY—R. A. JONES()
NOTES AND COMMENTS 208
HEADQUARTERS NOTES 214
LONDON DISTRICT NOTES 216
THE INSTITUTION OF POST OFFICE ELECTRICAL ENGINEERS 219
LOCAL CENTRE NOTES 220
BOOK REVIEWS 231
STAFF CHANGES 231
COMMUNICATIONS 234
ESSAY COMPETITION, 1925-26 234

All communications with regard to advertisements to be addressed to:
The Advertisement Manager, Post Office Electrical Engineers' Journal, 4, Ludgate Hill, Lonciun, E.C.4.

PUBLISHERS :
THE ELECTRICAL REVIEW, LTD., 4, LUDGATE HILL, E.C.

\section*{- and then he got a trouble-free phonẻ system}

THE exasperating breakdowns, delays and muffled speech encountered on ordinary phone systems fade away when an Eriesson System is installed. Trouble-free clear-speaking and carrying a tiny maintenance bill, it proves a wonderful business aid and soon repays its moderate intitial cost. Stands up Wonderfully well to hat we:tr.

Write to-nan for free fully illustrated and informative pamphlets.

ERICSSON TELEPHONES LIMITED
International Buildings,
67-73, Kingsway,
London, Eng., W.C.2.
WORKS: BEESTON. NOTTS
Telephone :
Gerrard 3003, 3004
Telegrams: Ericsson, Westcent, London.

vi.

音||

\section*{CREED}

With the recent acquisition of the MURRAY PRINTING TELEGRAPH SYSTEM, and our most recent development, the CREED START-STOP SYSTEM, we are now able to offer our Customers the choice of three distinct TELEGRAPH SYSTEMS, namely :-

THE CREED HIGH-SPEED AUTOMATIC SYSTEM, the original Creed System, now well known and used throughout the world by leading GOVERNMENTS, CABLE COMPANIES and NEWSPAPERS.

THE CREED START-STOP SYSTEM, a direct printing telegraph system destined to be used extensively on short lines as between offices and works, for news distribution, etc., etc. The transmission is "direct to" line and reception, and printing effected "direct from" line instantaneously. BANKS, RAILWAYS, SHIP-

\section*{CREED \& CO., LTD., Gelegraph Éngineers,}

Telephone: Croydon 2121.

\title{
INSTRUMENTS
}

YARDS, COMMERCIAL and BUSINESS HOUSES are among the many who will be the users of this System in the near future.

THE MURRAY MULTIPLEX SYSTEM provides the user with the means of transmitting and receiving automatically from four to ten (according to the installation) distinct and separate messages over a single wire at the same time. It will therefore appeal to GOVERNMENT TELEGRAPH DEPARTMENTS and NEWSPAPERS in particular.

Apparatus for all three Systems is now manufactured on the well-known Creed System of standardisation, and intending customers may be assured that replace parts to the smallest detail are obtainable without difficulty.

We invite you to write for further particulars, or better still, arrange for a demonstration at our Works at Croydon.

\section*{TELEGRAPH WORKS CROYDON, SURREY}

Telegrams: "Credo, Croydon."

\section*{Standard \\ FORMERLY \\ Western Electric Automatic Telephone Systems}

\(S T\)
TANDARD Automatic Private Branch Exchanges are essential to all business houses. They represent a time-saving factor of great value and increase the general efficiency of any organisation.
Here are some points for consideration:-
1. No operator is required, therefore the anmual cost is negligible compared with a manuallyoperated switchboard.
2. The apparatus is ready for use day and night-or 8.760 hours per anmum.
3. Absolute secrecy is secured on every call without any special manipulation of the Set on the
4. High speed of operation. There is no waiting on the No. 47001 sjstem, as the number is selected by the mechanism dusing the process of dialling.
5. The caller is instantly advised if the wanted line is engaged and (should he decide to hold the telephone for a minute or so) he is automatically connected ats soon as the required line is free.
6 The caller is given contidence in the apparatus as he supervises the call and can hear the distant bell ringing.
7. The apparaus is simple to instal. beine in standardised unit form.

8 It is economical to house becanse it mas lie fitted in a position which would be unsuitable for all operator.

\section*{Srandard Telephones and Cables Limited} Connaught House, Aldwych, London, w.c.2.
'Phones: Central 7345 (10 lines). Works. HENDON, N()RTH WOOLWICH and NEW SOUTHGATE. Branches: Glasgow, I,eeds, Birmingham, Manchester, Cardiff, Liverpool, and Dublin.

\section*{SIMPLEX WORKING ON FAST SPEED REPEATERS.}

On long aerial lines diffoculty is experienced at times when owing to weather loss, etc., the received currents are too weak to actuate the Auto relay, although the transmiting relay may be

functioning perfectly. This applies more especially to the period when reversals are being sent by the distant transmitter. Similar conditions obtain on long underground circuits which are being worked at or near the possible maximum speed.

The Auto relay can never be quite so sensitive as the Line relay owing to the presence of the controlling springs and the necessity for more open contacts, as the tongue must be capable of taking a central position where, when at rest, it touches neither the " marking" nor " spacing" contact.

By the addition of a second Auto relay, joined up as shown by the dotted connections on the diagram, it is possible to utilise the signal sent out by the line relay for the purpose of keeping the automatic switch closed whilst signals are passing.

This arrangement obviates the necessity for reducing the resistance of the reading condenser, as is sometimes done, in order to make the Auto relay function properly and will therefore assist in maintaining the normal speed of working.
E. Lack.

\section*{THE LONDON-GLASGOW TRUNK TELEPHONE CABLE AND ITS REPEATER STATIONS.}

The London-Derby No. 2 cable, which was accepted from the Contractors (Standard Telephones \(\mathbb{\&}\) (Cables Limited) in December last, completes the London-Glasgow cable, the backbone of the trunk telephone cable network of Great Britain. The DerbyGlasgow section of the cable has already been in partial use for about a year, extension to London being provided by means of spare quads in the London-Derby No. i cable.

The object of this article is to describe particularly the LondonDerby No. 2 cable, which represents the most modern practice in telephone cable manufacture and installation, and the Repeater Stations between London and Glasgow, all of which were equipped by the Standard Telephones \& Cables Limited (formerly the IVestern Electric Co. Lid.).

Fig. 1, which is reproduced from our Volume XVIll., page 261 , shous the route of the main cable with its spurs and the location of the Repeater Stations.

As an indication of the density of traffic it may be noted that there are three telephone cables in the section London to Fenny Stratford, comprising a total number of 200 quads together with 28 telegraph quads, and between Fenny Stratford and Derby there are two cables, comprising a total of 202 quads including the telegraph quads previously mentioned, while the Derby repeater station is designed for an ultimate equipment of 1500 repeaters.

\section*{Cable.}

Of the three cables between London and Fenny Stratford, one is the old London-Birmingham cable which was described in this Journal, Volume VIII., page 206. The second is
the London-Manchester cable, which is a medium-medium loaded cable installed immediately after the War and worked exclusively on a 2 -wire basis and also furnishes the telegraph quads previously mentioned, and runs from London to Manchester with repeaters at Fenny Stratford and Derby. The third is a new cable furnishing the long circuits going North of Derby on the Glasgow route. A cross-Section of this cable is shown in Fig. 2. This route runs from London to Glasgow with repeaters at London,

Fig. 1.-Teiepione Releater Stations-Pian of Systems.
Fenny Stratford, Derby, Leeds, Catterick, Newcastle, Jedburgh, Edinburgh and Glasgow. This cable is of particular interest as it shows the segregation of the 4 -wire circuits in the Up and Down groups, while the 2-wire circuits form the centre of the cable. The 4 -wire circuits are 20 lb . and are medium-heavy, half medium-
heave and extra light loaded in accordance with their allocation to various points on the route, while the 2 -wire circuits are to lb . medium-heavy loaded throughout.

The order for the London-Derby portion of this long cable logether with its loading equipment was placed in November, 1924 , and the cable was completed in December, 1925.

Fig. 2.--Siction, Lovion-Diderb Chime.
During this period nearly igo miles of cable were pulled in, tested and jointed and over \(45^{\circ}\) loading coil cases were installed. The cable consists of \(4+\) quads of 40 lbs . conductors and 78 quads of 20 lbs . conductors arranged as shown in Fig. 2. The loading is \(\mathrm{H}-\mathrm{I} 77-107\), \(\mathrm{H}-89-50\) and \(\mathrm{H}-4+-25\) (known as medium-heavy, half medium-heavy and extra light respectively, where \(H\) represents the loading coil spacing and equals 6000 ft ., the first figure the

THE LONDON-GLASGOW TRUNK TELEPHONE CABLE.
C.L.T.3. STANDARD TELEPHONES \& CABLES LT:
L.S.No

Type of Test
Capacity Unbalance Data Sheet. Buff
Date.

Fig. 3.-Typical Jonting Diagram.
side circuit coil inductance and the second figure the phantom circuit coil inductance). The following circuits are initially provided : -

Fig. 4.-Layout of Manhole with Single Stub Cases.
A typical jointing diagram for this cable is shown in Fig. 3, which illustrates the method of jointing a cable by which the capacity unbalance is reduced by cross-splicing. There are usually three or seven such test splices made in each loading section.

Loading.-In connection with the loading of the new cable, of which a cross-section was shown in Fig. 2, single stub loading coil cases have been used. This method of jointing loading coils

\section*{}
into cables has an advantage over the wo-stub method generally used on previous cables as it makes the loading coil manhole lay-

Fus. 5.-wita Singif: Stub.
out very much simpler. Fig. 4 shows the layout of loading coil cases in a manhole on this cable and illustrates the simplicity and 108
advantages of using the single stub construction. A photograph of one of the loading coil cases with a single stub, as used on this cable, is shown in Fig. 5.

Repeater Sections.-From the point of view of obtaining good transmission results from a repeatered system it is necessary that the constants such as impedance, attenuation, etc., of each repeater section shall be as uniform as possible, both as regards the values when plotted against frequency for any individual circuit as well as within each type of group. It is also essential that the crosstalk in the repeater section of cable shall be held within fairly close limits, since it can be proved that the repeater section cross-talk is the most important factor in the overall circuit cross-talk.

As explained above, it is important that the characteristics of the circuits shall remain as constant as possible, and for this purpose the following methods were adopted:-

Capacity Unbalance and Resistance linbalance.-These unbalances were reduced as much as possible during the manufacture of cable length.s. Further reductions were obtained in the field by means of special test joints. Capacily unbatance was reduced generally at 3 test joints in each loading section, this number being increased 107 at the ten loading sections adjacent to each repeater station.

Capacity Deviation.--The "regularity" to be maintained on the circuits, which was referred to earlier in this article, is closely connected with the deviations from the areage mutual capacity. These capacity deviations are of two kinds, circuit deviations and stection deviations. By the former is meant the deviations of the individual circuits of a group in a loading section from the average capacity of all the circuits in that group. By section deviation is meant the deviation of the arerage mutual capacity per loading section of a group of circuits from the average capacity for that group for all loading sections.

Circuit deviation was reduced both in the factory and in the field. In the latter case one test joint was made in each loading section, but this was confined to the ten loading sections adjacent to each repeater station.

The final tests on this cable were of two kinds, those on repeater sections and those on the repeatered system.

The following tests were made on the two repeater sections:--
(i) Loop Resistance.
(ii) Resistance Unbalance.
(iii) Insulation Resistance.
(iv) Singing Point.
(v) Impedance frequency.
(vi) Attenuation.
(vii) Cross-talk.

Tests Nos. (iv) (v) and (vii) were made from each end of each repeater section, the others being made from one end only. The results of these tests are summarised below :-
(i) Loop Resistance. This test was made chiefly as an assurance as to the uniformity of resistance of all similarly loaded circuits of the same gauge.
(ii) Resistance Unbalance. This test was made to measure the resistance unbalance between the wires of each pair. In no case was a resistance unbalance of more than 2 ohms found, the average unbalance being about 0.2 ohms.
(iii) Insulation Resistance. The insulation resistance was measured on all wires, and no value lower than 50,000 megohms per mile observed.

Fig. 6.-Circuit of Unbalance: Set.
(iv) Singing Point. The singing points of all 2 -wire circuits were measured from each end of each repeater section. The results are tabulated later.

Two distinct methods of measurement were adopted, one using a singing point test set and the other an impedance unbalance measuring set.

The singing point test set is virtually a portable 2 -wire repeater and the results of the tests made with it are therefore a direct indication of the maximum gain which could be inserted in the line at the point at which the test is taken. As the maximum gain Which it is usually desirable to obtain from a 2 -wire repeater is of the order of 15 TU it will be seen from the results of the singingr point test, that a very ample margin of safety exists on the circuits
of the London-1 erby cable. This margin, however, has a directly beneficial effect on the quality of speech transmitted.

From the results obtained in this way typical circuits were selected for further analysis.

The other method of measuring singing points is based on the relation between singing point and the impedance unbalance between two circuits or a circuit and its balancing network.

Fig. \(\mathbf{6}\) shows the essential part of the circuit by which singing points are measured when using the Impedance Unbalance Measuring Set. The coil shown in the figure is the so-called " hybrid" coil which is used in 2-wire repeaters to ebtain duplex

Fig. 7.-Impedaree Curvis H-ifi-107. Mmidem Heavy fo tis. Pmantom Circitts.
operation. If the balance between line and network were perfect, the transmission loss between \(A\) and \(B\) would be infinite-i.e., all current entering the circuit at A is divided between the line and network, no current passing across the windings to B. As soon, however, as there is any impedance unbalance between line and network some current does how from A to \(B\), the amount of this current depending on the magnitude of the impedance irregularity.

The Impedance Unbalance Measuring Set is designed to measure the transmission loss between A and B, and since both this loss and the singing point are dependent on the degree of
balance between line and network the set may be calibrated to read the singing point of line and network.

With this apparatus it is possible to measure the singing point of the line at any required frequency, whilst the singing point test set merely selects the frequency, within the efficient range of the repeater, at which the unbalance is greatest and the singing point consequently lowest.

Singing points were measured with this set at frequency intervals of \(20 \mathrm{p} . \mathrm{p} . \mathrm{s}\). from \(200-2400\) p.p.s.

This frequency range was then divided up into bands and the lowest value of singing point recorded for each band.

(v) Impedunce frequency. Impedance frequency tests were made on about \(10 \%\) of the loaded circuits in the cable, the 2 -wire circuits being the same as those selected for the singing point tests made with the impedance unbalance set.

Typical curves are shown in Figs. 7, 8 and 9 . Impedance frequency curves afford a ready means of ascertaining the degree of regularity obtained on the circuits. Ideally, of course, the impedance frequency curve for the line would be quite smooth, and in such a case a perfect balance would be possible between a
line and its balancing network, which would give an infinite value for the singing point, provided always that the repeater itself were perfectly balanced.

In practice, however, irregularities will always appear in the curve and since it is not practicably possible to construct a balancing network which would follow the irregular shape of the curve there will always be impedance unbalances between line and network at many points in the frequency range.

The singing point of the line will depend on the magnitude of these unbalances.

Fig. 9.-Impedance Curves H-44-25. 20 lbs. Pifantom Circutt.

One point is of considerable interest in this connection and is illustrated by Fig. 7, which shows the impedance frequency curve of one of the 2 -wire circuits. On the same curve is plotted the impedance frequency curve of the standard network with building out condenser which is employed at the repeater stations. With cables constructed, installed and tested by the method employed on this cable the networks can be designed from the prime constants of the cable and one network will furnish excellent results with all circuits. Details of these networks and a multi-unit condenser which is used as a building-out section will be dealt with under Repeater Equipment.

SINGINE POINTS (TL).
(vi) Attenuation. Measurements of attenuation were made at various frequencies, all loaded circuits being measured at 800 and at 2000 p.p.s., and a number of circuits, typical of each circuit group, over a frequency range.

The average attenuation, corrected \(1050^{\circ} \mathrm{F}\)., for each type of circuit at 800 and 2000 p.p.s. is given in the following table:-

Attenuation (\(\beta\) per mile at \(5{ }^{\circ}{ }^{\circ} \mathrm{F}\).).

Type of Circuit.
40 lb . \(\mathrm{H}-\mathrm{I} 77-107\) Side
Phantom
\(20 \mathrm{lb} . \mathrm{H}-\mathrm{I} 77-107\)
20 1b. H-89-54
4) Jb . H-44-25

20 1b. H-44-25
\begin{tabular}{cc}
800 c.p.s. & \(2000 \mathrm{c} . \mathrm{p} . \mathrm{s}\). \\
.0177 & .0230 \\
.0145 & .0194 \\
.0306 & .0354 \\
.0249 & .0292 \\
.0398 & .04 I 6 \\
.0320 & .0339 \\
.0288 & .030 I \\
.0238 & .0253 \\
.0537 & .0553 \\
.045 I & .0468
\end{tabular}

Fig. 10.-Attencation res. Frequency Curve If-if7-iot. 20 lbs. Side Circuit. Measuring Current o. 5 m.a.

In Fig. 10 is shown a typical attenuation frequency curve.
(vii) Cross-talk. Cross-talk measurements were made on all loaded circuits, using as testing current a complex tone which gives results very close to those which would be obtained in a speech test.

Near End cross-talk was measured on all 2 -wire circuits. In these tests the measuring apparatus and the source of tone were alwass at the same end of the circuit.

Far End cross-talk was measured on the 4 -wire circuits, tone being placed at one end of the circuit and the measuring apparatus at the far end.

All cross-talk results given in this article have been corrected in the case of phantom to side cross-talk on the basis of the phantom and side circuit impedances, and in the case of Far End cross-talk on the basis of the equivalent of the circuit over which the testing tone is sent.

The results are tabulated below:-
Near End Cross-ialk (Cross-lalk Units).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline fo lb. H-17テ-IO\% & \begin{tabular}{l}
I'hant \\
Are. \\
185
\end{tabular} & \begin{tabular}{l}
-side. \\
Mas.
\[
320
\]
\end{tabular} & \[
\begin{aligned}
& \text { Side } \\
& \text { Ave. } \\
& 105
\end{aligned}
\] & \begin{tabular}{l}
isle. \\
Max. \\
100
\end{tabular} & Phantom Ave. 105 & Phantom. Max.
\[
250
\] \\
\hline \multicolumn{7}{|c|}{Far lind Cross-talk (Cross-talk l nits).} \\
\hline & \multicolumn{2}{|l|}{Phantom-side. Are Jix.} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Sids-side. } \\
& \text { Are. Mis. }
\end{aligned}
\]} & \multicolumn{2}{|l|}{Ihantom-Phantom. A'e. Max.} \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
London Repeater \\
Section. 46.4 miles.
\end{tabular}} \\
\hline 20 lb . \(\mathrm{H}-\mathrm{I} 7\) フ-107 & [30 & 295 & 55 & 110 & 45 & I I 5 \\
\hline 20 lb . H-89-54 & 90 & I90 & 25 & 60 & 25 & 45 \\
\hline 20 lb . \(\mathrm{H}-44-25\) & 75 & 120 & 15 & I 5 & --- & - \\
\hline 40 lb . H-44-25 & 180 & 25 & 65 & 75 & - & - \\
\hline \multicolumn{7}{|l|}{Derby Repeater} \\
\hline 20 lb . \(\mathrm{H}-177-\mathrm{IO}\) & 85 & I I 5 & I 5 & 30 & IO & 25 \\
\hline 20 1b. H-89-54 & 60 & 85 & 5 & 5 & 5 & 5 \\
\hline 20 lb . H-44-25 & 20 & 30 & 5 & 5 & - & - \\
\hline 40 lb . H-44-25 & I 55 & 175 & 130 & I 45 & - & - \\
\hline
\end{tabular}

Overall Tests.-The final series of tests made were system tests over repeatered circuits. The cable was completely installed before the repeaters were in operation and temporary repeater equipment was installed in order to enable overall tests to be made.

This temporary equipment was installed at London, Fenny Siratford and Derby in such a way as to allow both 2 - and 4 -wire repeaters to be inserted in any required cable circuits, which would then be set up from London to Derbe and back again to London. Fig. 11 shows the arrangement of the repeaters on these circuits, from which it will be seen that both ends of the circuits were available in London.

The following tests were made on these 250 mile circuits :-
(i) Overall transmission equivalent.
(ii) Cross-talk.

Fifi. 11.-Overafi. Tests: Arrasigemfnts on Rebpaters.
(i) Here again, all circuits were measured at 800 and 2000 p.p.s., the results of the tests being given below:-

Soo and 2000 c.p.s. tests.

In the case of the half medinm heary circuit the above figures are somewhat high, due to the conditions of test. Under actual working conditions terminal repeaters will be used at London on the circuits, resulting in lower overall equivalents.
(ii) Cross-talk was measured through all the terminating equipment and the following results obtained :-

Overall Cross-talk (Cross-talk Units).

Fig. 12.-Average Cross-tatik Curves.
Particular attention should be paid to the cross-talk frequency curve shown in Fig. 12, which gives the average figures obtained on the medium-heavy \(40-\mathrm{lb}\). circuits for Phantom-Side, Side-Side, Phantom-Phantom and Pair-Pair, where the pairs are located in different quads.

\section*{Repeater Station Equipment.}

To give a general picture of the apparatus, power plant, etc., used in the repeater stations on the North-East route, Fig. 13 shows a floor plan of the Derby repeater station. This floor plan does not cover the final station, which will cater for i500 repeaters, as previously stated, but only with the repeaters installed up to the present time.

THE LONDON-GLASGOW TRUNK TELEPHONE CABLE.

A series of photographs is given illustrating the power board, etc., at the I.eeds repeater station; repeater bays, coil racks and test units at the berby repeater station, and individaal photo-

Test Tablet and Transformer Racks. General. View.
graphs of the repeater units, boh 2 -wire and + -wire. It is thought that the photographes ate sufficiently self-explanatory not to need

any description and that there is more interest in a description of the circuits involved on the whole system that on the equipment.

Test Tiblets and Transformers.

4-Wire Repeater Rack.

2. Wire Reprater Rack. Repeaters and Low-Frequency Signalling Appakitus.

z-Whele Replaters asi latriek Subliy Mprarates with Voice Frequency Signiliming.

Gain Measuring Instrements.

General Vien. Reieiter Apraratus Room, Derby.

General View. Power Room, Derby.

Filament Battery Chariing: Sets and Powek Board, Leeds.

THE LONDONGLASGOW TRUNK TEIEPHONE CABLE

Piate Buthery Charging and Ringing Machines, Leeds.

filaments and Plate batteries, Leeds.

4-Wire Repeater Unit. Front View. Cover on.

4-Wire Repeater Unit. Front View. Cover off.

4-Wire Repeater Unit. Rear View. Cover off.

z-Wire Reifater Uilt. Front View. Cover on.

2-Wire Repfater Unit. Frowt Vife. Cover off.

2-Wire Repeathe Uivt. Reak View. Cover off.
As a matter of interest the following table gives the initial number of repeaters at the various stations on the route as well as data on various other points :-
\begin{tabular}{|c|c|c|c|c|}
\hline & & & & Yacuum \\
\hline & & 2-wirc & 4-wire & Tubes \\
\hline L.ondon & \(\ldots\) & 6 & 54 & 228 \\
\hline Fenny-Stratiord & \(\ldots\) & 20.5 & 54 & 752 \\
\hline Derby & \(\ldots\) & 3148 & 54 & 832 \\
\hline Leeds & \(\ldots\) & 1.30 & 60 & 500 \\
\hline Catterick & \(\ldots\) & \%) & \(5{ }^{\circ}\) & 340 \\
\hline Newcasile & \(\ldots\) & 20 & 50 & 240 \\
\hline Jedlurgh & \(\ldots\) & 30 & \(5{ }^{\circ}\) & 260 \\
\hline Edinbursh & \(\ldots\) & 51 & 50 & 300 \\
\hline Glasgow & \(\cdots\) & - & 45 & 180 \\
\hline Total & \(\ldots\) & 852 & 46 & 3632 \\
\hline
\end{tabular}

THE LONDON-GLASGOW TRLNK TELEPHONE CABLE.

Repeater Circuits.-It will be realised there is of necessity a number of special cases calling for special circuit arrangements in such a network, but it is not felt necessary to emphasise these particular arrangements. Accordingly, only typical arrangements have been dealt with, these, of course, forming the majority of the cases on the North-East route. The following typical circuits are illustrated: -

2-wire repeatered phantom group Fig, 14.
2-wire terminal with V.F. signalling Fig. 15.
4-wire repeatered phantom group (Through)... Fig. 16.
4-wire repeatered terminal with V.F. signalling Fig. 17.

Fig. 15.-- Somemtic of z-Wire Terminal With V.F. Signalling.

Dealing with the 2-wire through phantom group, the method of connecting the repeaters to the lines and neworks is illustrated and shows the C links from which the lines are tested and the jack arrangements by which the repeater units are patched when necessary and are tested with the gain measuring sets. A schematic drawing of a complete z-wire repeater circuit with its associated battery supply apparatus, operator's telephone and and tronk panel and filament control panels as shown in Fig. 18. There are several points on this figure which are worth noting. In the first place, the filters are located in the output circuit, which results in a simpler and cheaper design than when they are located in the input circuit. Potentiometers are of the constant impedance type that permits improved impedance of the ripeater, and the listening arrangements are such that the

THE LONDON-GLASGOW TRUNK TELEPHONE CABLE.

Fig. 17.-Schemitic of q-Wire Repeatered Terminal, with V.f. Signalling.
repeater attendant can listen and talk in either direction as required or in both simultaneously if necessary. The battery supply arrangements are so designed that the vacuum tubes of two repeater units are worked off one filament circuit, permitting a reduction in the power plant. This arrangement of working necessitates the use of means for reducing the filament cross-talk and the power plant is equipped with a power filter employing electrolytic condensers, thus obviating the necessity for individual lilament choke coils.

Since voice frequency signalling is used with these repeater units, there is, of course, no necessity for relaying ringing curren, at the repeater stations as it is amplified in the same manner as the speech currents, although means are provided for inserting 17 -cycle ringers when required.

The basic network used for all to lb. medium-heavy loaded circuits is shown in Fig. 19, and the building-out capacity necessary for each circuit is obtained from a multi-unit condenser containing to units, permitting values of capacity to within .oot mf . being obtained up to a maximum value of . 1 mf . Since the repeaters are designed to give a better low frequency gain than has been obtained hitherto, it is necessary to employ a network which gives good simulation at low frequencies and this is obtained by means of an excess simulator included in the standard networks, as shown in Fig. 19.

At the terminal of the 2 -wire group as described above, the arrangements shown in Fig. 15 are used. This arrangement consists of the line repeating coils for ohtaining a phantom circuit together with the 500 cycle ringer panels and cut-off relays. The ringer panels and cut-off relays are illustrated in more detail in Fig. 20, which shows the jacks used for testing the ringer panel hy means of the ringer test panel shown in Fig. 29. The ringer panel is equipped with a \(500-\mathrm{c}\) ycle relay of a new design which permits of the modulating feature used with these frequency ringing circuits for protection against false operation to be obtained from the incoming signalling current. This modulating feature operates the 20-cycle circuit, which immediately follows the voice frequency relay, and the final relays in the train do not operate unless the alternating current operating the voice frequency relay has the correct frequency of modulation.

The test panel associated with these ringers is shown in Fig. 29, and permits of the time delay feature in the ringer panel being tested and adjusted, as well as checking the complete operation of the panel from the two directions. Facilities are also provided for testing the 20 -crcle relays.

The cut-off relay shown in Fig. 20, when operated, closes the line through a resistance, which is necessary in order to prevent

serious echo currents if the line were open-circuited during the ringing period.

A 4 -wire through cable group with repeaters is shown on Fig. 16, segregation of input and output circuits is shown as well as the jacks used for patching and testing the repeater units. Low frequency corrector condensers are included in the input repeating coils, when necessary, on extra light loaded circuits to equalise the attenuation of a line at the low frequnecies and so prevent excess gain at these frequencies.

The + -wire repeater unit is shown in Fig. 21, which shows the unit together with its jacks, telephone and trunk panel, battery supply circuit, meter panels and filament control panel. The listening arrangements are similar to those on the 2 -wire repeaters.

Fig. 19.--Balancinc; Network for H-iz7-iō Phantom Circuit.

The gain of the repeater unit is adjusted by means of the tapped input transformer and inter stage transformer, while a fine adjustment is obtained by means of resistances in the outptit circuit. The repeater unit will cater for medium-heavy loaded lines and extra light loaded lines, the gain frequency curve being adjusted for the former type by means of the retard coil and condenser associated with the first input transformer.

A schematic of the terminating arrangements employed for the \(f\)-wire system is shown in Fig. 17. This covers the use of terminal 4 -wire repeaters, 4 -wire terminating sets, and 500 crole ringer panels. The t-wire terminating set and the method of connecting the 500 -cycle ringer panel to it are illustrated in more detail in Fig. 22. The operation of the ringer panel is the same as that described for the 2-wire case, except that the cut-off relays are included in the + -wire terminating set. The \(f\)-wire terminat-

Fig. 20.-Schematic of 2-Wire Terminal. joo Cycle-2o Cycle Ringing.

The londovalisciow trexk teilephone cable

Fig. 21.-. Schemitic of 4-Wire Repeater Cikcut with Associtifel Apparates. (S.t. anid C. Letd. Drawing, L 364i6).

THE LONDONGGLASGOW TRIUN TELEPHONE CABLE.

ing set consists of repeating coils and condensers so connected that they serve the double function of a hybrid coil and of a high pass filter.

In connection with the voice frequency signalling arrangements a schematic of the 500-cycle machines and control gear is shown in Fig. 23. This machine is designed so that its output from the winding is in the form of modulated 500 cycles, thus replacing the old arrangements of commutator output.

I'acuum Tubes.--The vacuum tubes used on the repeaters on the London-Glasgow repeater stations have oxide-coated filaments taking a current of 0.97 amperes. In illustration of one of these fubes indicates the design of the tubes and they are so

Fig. 24.-Type 4 ioi I) Tubie.
designed that microphonicity is reduced to a minimum. Fig. 27 gives the characteristic of the 4 rol- \()\) tube under conditions of zero load and when closed through a load impedance of 6000 ohms.

The tube operates normally with a plate voltage of 130 volts and a negative grid voltage of 9 volts. Under these conditions it will be seen from the load curve that the symetric distortion introduced by the tube is negligible.

In order to maintain the overall circuit equivalent under all ordinary conditions of battery fluctuation which occur in practice, vacuum tubes are rejected when the gain of a repeater varies bv more than o.ir \(\beta l\) for a change of filament current from 0.93 amp . to I .0 om amp .

This tube rejection test is made by means of the filament control panel and gain set previously mentioned.

The 4roi-D vacuum tube is capable of handling an output power of 0.59 watts, which is a factor to be borne in mind when laying out the transmission level diagrams.

Repeater Apparalus.--Gain frequency curves of the 2 -wire repeaters for medium-heavy loaded circuits are shown on Fig. 25 for all potentiometer settings from it 9 . These curves show a remarkable uniformity of curve for all settings.

Fig. 25.-Gain vs. Frequency. 2-Wire.
Gain frequency curves of the 4-wire repeater unit are shown in Fig. 26, the medium-heavy loaded values lying between the twe curves shown and various tappings on the retard coil previously mentioned give maximum values at intermediate points. The extra light leaded characteristic is shown below the medium-heavy loaded characteristic.

In setting up a 4 -wire medium-heavy circuit the iransmitting half of the repeater at the terminal stations is given an extra-light setting having the required mon-cycle gain obtained from the fransmission level diagrams.

All other repeaters, including the receiving halves of the terminal repeaters, are set so that the gain-frequency curve compensales for the atlenuation-frequence curve of the previous repeater section. By means of the adjustable tuning circuit menthoned above, it is possible to equalise for any repeater section
between the maximum and minimum lengths met with in practice.
Power Plant.-The principal features of repeater station power plants have been previously described in this Journal, and it is proposed in this article only to refer to those features of the power piants for the repeater stations on the North-Eastern cable which differ from the system previously explained. Photos on pages 126/7, and Fig. 28 illustrate the general arrangement of a typical plant and refer to Leeds Repeater Station as representing the system under consideration, which is distinguished from previous systems by the operation of the batteries on a floating routine.

Fili. 26-Gain vs. Fregulency. 4-Wire.
In this instance the power plant supplies both the local telephone exchange and the repeater equipment, and for this reason particular care has been exercised in obtaining a perfectly noiseless supply for the cable circuits. The 22 to 30 volt generators which are used for charging and floating the filament or "A " batteries are of special construction, embodying the usual features of telephone lype machines--a large number of commutator segments and armature slots per pole, a long air gap, chamfered pole shoes and skewed armature slots. Such means alone, however, are insufficient to ensure noiseless operation of repeatered circuits, and a special filter is inserted between the generator and the battery when floating. This filter consists of suitable choke coils in the negative lead and a bank of three electrolytic con-
densers connected across the negative and earth leads. The use of electrolytic condensers enables a high electrostatic capacity to be obtained in a small space. Three condensers, each of 1000 mf ., are connected in parallel. In this way all noise arising from the machines and from the relay and miscellaneous exchange circuits is prevented from reaching the repeater circuits.

For repeater working the normal permissible voltage variation at the fuse panel bus-bar is \(\pm 0.5\) volt. The foating battery system

Fig. 27.-Characteristic of Type 4101 D Tube.
provides a ready means of maintaining a steady bus-bar voltage, even over a certain range of load fluctuations, and it is necessary only for the attendant to adjust the generator field regulator when considerable changes of load take place. During periods of failure铝 the outside power supply the two " A" batteries may be connected in parallel for discharge to the exchange and repeater єquipment, in which case a further fall of 0.9 volts is allowable at the fuse panel bus-bars.

The emergency reserve power plant at Leeds consists of an engine coupled to a generator which will produce \(60 \mathrm{~K} . \mathrm{W}\). at the same voltage and frequency as the normal power supply.

Fig. 28--lunoly of Buthery and Power Room, Leeds.

The floor plan las-out of Leeds repeater station battery and power rooms is shown in Fig. 28, these rooms being located adjacent to the repeater room on the second floor. The equipment is so arranged as to require the shortest possible length of cabling between the batteries, machines and apparatus racks.

The duplicate filament or " \(I\) " batteries each consist of 11 wood lead-lined cells with an initial capacity of 5000 ampere hours at the 9 hour rate, suitable for extension to a capacity of 7500 ampere hours at the same discharge rate. The batteries are
illustrated on page 127 , the space in the cells available for extension being clearly shown.

The duplicate plate, or " B " batteries, each of 65 wood leadlined cells, are arranged for initial and ultimate capacities of 150 and 300 ampere hours respectively at the 9 hour rate. These batteries, mounted on double tier wooden stands, are seen in the background of the same Fig. The voltage limits for the " B " tatteries are 125 to 135 volts measured at the repeater fuse panel, which limits are readily met by charge-discharge operation.

Duplicate grid, or "C '" batteries, are supplied, each consisting of 5 glass cells of 20 ampere hours capacity at the 9 hour rate for both the initial and ultimate repeater equipments. The voltage limits for the " C" batteries are 9.5 to il volts measured at the repeater fuse panel. The " C " batteries are operated on a charge -discharge routine, charge being effected from the " A " battery bus-bar through a suitable resistance.

The whole of the above batteries are of the Chloride Co.'s manufacture.

Fig. 29.-Ringing Teit Panel.

A general view of the " A" battery machines and power board is shown on page 126. Each of these motor generator sets consists of a Crompton Co.'s slip ring incluction motor operating on a 200 volt, 2 -phase, \(f\)-wire 50 cycle supply and direct coupled to a 22 to 30 volt, 650 ampere telephone type generator, as mentioned above. The motor-starting panel for these machines may be seen on the extreme left of the power board.

Two \(130-180\) volt, 50 ampere, " B " battery motor generator sets are provided for charging purposes, the generators of which are ordinary commercial type machines manufactured without
special restrictions regarding commutator ripple. One of these machines is shown on page 127. The photo also shows the two 17 cycle ringing machines which are provided, one for operation from the outside poiver supply and the other suitable for running from the " A " batteries. The line driven machine is normally used and the battery driven dynamotor is operated only during periods of power supply failure.

The power board mounts the necessary switchgear, instruments. and meters for the machines and batteries described above and calls for no further comment.

We are indebted to the International Standard Electric Corporation for much of the technical detail and the diagrams included in this article; and we desire to take this opportunity of acknowledging the extent to which the present advanced stage of the art of long distance cable telephony has been due to the basic work of the Bell Sistem Laboratories of the American Telephone and Telegraph Company and io the information published in their technical literature.

\author{
A.B.l.
}

\section*{LONDON—BERLIN TELEPHONE CIRCUIT.}

On the \(15^{\text {th }}\) March a night telephone service with Germany was opened. Communication was established with Berlin, Hamburg and Cologne. This limited service is merely a temporary expedient pending the introduction of a full time service later in the year, when the third Anglo-Dutch Cable is brought into use. The llamburg and cologne circuits are provided by extending two of the London-Amsterdam Trunks. Since the Berlin Circuit had to be specially dealt with on account of its greater length some details of the arrangements made may be of interest.

In the first instance an attempt was made to establish communication between London and Berlin by extending a LondonAmsterlam circuit as in the case of Hamburg and Cologne. It was found, however, that sufficient volume could not be ensured to permit of reasonable extension. The London-Amsterdam circuit used was made up of a two-wire circuit on underground conductors London to Aldeburgh, submarine cable to Domburg, and thence underground Domburg to Amsterdam, with repeaters at Aldeburgh and Middelburg. For the Berlin circuit a repeater was introduced at Amsterdam. From Amsterdam overhead conductors continued the circuit to Münster, between which town and

Berlin a four-wire underground circuit was used with repeaters at Münster, Bassum, Hanover, Magdeburg and Berlin.

As a result of the preliminary trials it was decided to make the London-Amsterdam section of the circuit four-wire. The section Amsterdam-Münster had to remain as a two-wire circuit as spare conductors were not available to make the circuit four-wire throughout.

Fig. 1 indicates the composition, lengths and gauges of conductor and the attenuation lengths of the various sections of line, as finally made up, and also the location of the repeater stations. The total length of the circuit is 877 miles.

Fig. 1.-Make-uf and Particulars of Circeit. \(b=\) Attenuation length \((\beta l)\).

From a study of the attenuation of the various sections of the circuit provisional settings of the repeater gains were arranged. Transmission measurements were then made over a range of frequencies to determine the transmission levels at the various stations and final adjustments were then made to obtain suitable transmission levels and reasonably uniform transmission over the frequency range of commercial speech.

The following table gives the results of tests made when transmitting in the two directions:-

\(+=\) above transmission level at the sending end.
- = below

Taking the efficiencies at \((1)=5000\) it will be seen that the standard cable equivalent London to Berlin is about 10.3 standard miles, and in the direction Berlin to London 8.0 standard miles. The measurements were made by sending into the circuit at each enci in turn the equivalent of 1 milliwatt into an impedance of ono ohms, and measuring the voltage across the circuit at intermediate and terminal points. The readings were corrected for impedance if the circuit differed from 600 ohms in impedance. The readings given for Amsterdam were taken on the output side of the repeater.

It will be noticed that at the higher frequencies there is a difference in the efficiencies in the two directions. As this did not interfere with satisfactory speech steps were not taken to correct it before bringing the circuit into use.

In a telephone circuit it is not practicable to so arrange the impedance of the terminal apparatus that the whole of the received energy is absorbed in the receiving apparatus. A portion of the energy is therefore reflected back to the sending end. In a short circuit the reflected energy is so quickly transmitted that it becomes merged with the ordinary side-tone in the receiver, and is not noticed. In a long circuit without telephone repeaters the reflected energ! returns later, but is so attenuated as to be still unnoticed. In the case of the Lonclon-Berlin circuit, however, the time of transmission is much greater than the normal and, owing to the attenuation having been greatly reduced by the introduction of repeaters, the reflected energy is considerable and is relatively much delayed with respect to the transmitted speech. In consequence, unless steps were taken to prevent it, the reflected speech currents would cause the speaker to imagine that the listener was trying to interrupt him, his own speech being heard as an echo.

In order to orercome this difficulty " echo suppressors" have been installed in London and Hanover. This apparatus renders the Berlin-London side of the circuit inoperative when speech is being transmitted from London to Berlin and vice versa.

Fior a description of the " echosuppressor " as used in London reference should be made to a paper br Messrs. Robinson and Chamner, read before the Institute of Post Office Electrical Engineers, entitled "Recent Resparch Work on Telephone Repeaters " (Professional Paper No. 99).

It should be mentioned that, in addition to the true " echo" effect, circulating currents due to inevitable out-of-balance conditions at the junction between the four-wire and the two-wire portions of the circuit are also returned to the sending end and operate in the same manner as the true echo. The "echo suppressors" stop these currents also, and it is for this reason

that an "echo ", suppressor has been provided for each four-wire section. Fig. 2 shows the circuit arrangements.

At the London end of the circuit a section of artificial cable is connected between the output side of each repeater and the line to enable the maximum amplification of the repeater to be used without unduly increasing the transmission level on the line. This arrangement makes arailable a greater voltage for operating the " echo suppressors" and the latter thus operate more efficiently with weak speech currents than they would do otherwise.

It will be noticed that phantom circuits are used in the submarine cable.

Signalling is effected by means of 500 cycle alternating current. The energy used is within the scope of the telephone repeater valves and the signalling current is amplified in the same way as ordinary speech currents. Intermediate ringing repeaters with their attendant relay troubles are thus eliminated. Reference to the table of transmission values will show that the efficiency is good at the lower frequencies and this is necessary in order that the ringing currents shall be properly maintained. A test at a frequency of 500 cycles \((\omega=3140)\) showed the efficiency to be practically the same as that at \(\omega=4000\).

Special relays designed to respond to the 500-cycle current are used to receive the signalling current and these relays operate ordinary telephone type relays which send out i6-cycle current to the normal exchange signalling equipment. The operators ring in the usual manner with 16 -cycle current and this operates relays which cause soo-cycle current to be passed out on one side of the four-wire portion of the circuit. A diagram of the terminal arrangements for \(500-c y c l e ~ s i g n a l l i n g\) will be found on page 279 , Vol. 18 , of this Journal.

The echo suppressors were manufactured by the General Flectric Cov. (Peel Works, Coventry).

As already explained, the arrangements are only of a temporary character. When the full day service is opened the Berlin circuits will be operated as four-wire underground circuits throughout, except in the submarine cable section which will be worked on a two-wire basis. Repeaters will then be installed at Marks Tey instead of London and the Middelburg station will be replaced by one at Domburg.
[Note.-The Anglo-Dutch No. 3 Cable has been laid from Domburg to Aldeburgh and tests prove it to be efficient. We hope to give a description of this rable in our next issue.-En., P.O.E.E.J. 7

\title{
AUTOMATIC TELEPHONE EXCHANGES IN AMSTERDAM. MAINTENANCE EXPERIENCE.
}

\author{
By Dr. Ir. Ch. E. A. Maitland.
}

A short description will be given of the installation of the telephone system in Amsterdam.

There are now (1925) four main exchanges and one satellite, viz.:-

2nd level South, Tenier Sireet. C.B. 2 full automatic.
3rd ,, Central, Singrel Street. C.B.3 full and semiautomatic.
\(4^{\text {th }}\),, North, Raadhuis Sireet. C.B. 4 semi-automatic.
\(5^{\text {th }},\), East, Middenweg. C.B. 5 full automatic.
oth ,, of which the bulk of the ist G.S. and 2nd G.S. are placed in the office North, and one satellite is installed on the opposite side of the river at the Wingerdweg C.B. 6 (full automatic).

All exchanges are of the Siemens and Halske Strowger system. They work with impulses with earth return. The switches are controlled electro-mechanically by sequence switches. These sequence switches are of a minor switch type with banks and wipers.

The toll traffic is served by means of manual switchboards, except in the satellite of the 6th level, where the toll traffic is distributed automatically.

Table I gives various information about the exchanges. The semi-automatic exchanges are being altered gradually to become full automatic. The figures under 9 and 10 relate to the load during the peak hour 10-11 in the morning for January, 1925. They hold for normal working. On special days higher figures are reached, for example 22500 for C.B. 4 .

The maintenance of a telephone exchange can be divided into two parts:-
I. Preventive measures.
2. Removal of faults.

The first includes the measures for revealing and removal of faults before they have caused disturbance to traffic. The second refers to the removal of faults which have been revealed by causing disturbance to traffic. The statistics in the first category serve as a judge of the work of the maintenance staff, those in the second category show the quality of the maintenance.

The sharp demarcation of the different types of faults in the maintenance statistics would, however, cause insurmountable
trouble. For instance, if a fault is found by the patrol it is by no means sure that a fault of one or another kind has not already arisen in a connection, which, however, has given no cause for a complaint and has not been advised in any other way.

Conversely, the fault may have been noticed owing to supervisory signals, among others, those due to a temporary overload of the switching apparatus, which are therefore not caused by any technical fault. For these reasons it is convenient to divide the various types of faults as follows:-

Fig. 1.-Nembib of Factity Connlectons as Percentage of the Total Number of Calits in 1924.
(ist) Control faults which have given no cause for a complaint, yet have been found by the staff by means of tests, either by the routine tests or by various supervisory apparatus (C faults).
(2nd) Faults, which are reported by the public to the monitor (S faults).
(3rd) Faults, which are advised by the operators (B faults).
The first category affords an indication of the activity of the staff, while the figures of the second are a measure of the public's appreciation of the service and as such can serve as an indication of the quality of the service.

The third group stands more or less by itself. The faults

\section*{AUI6MATIC TEIIEPHONE EXCHANGES IN AMSTERIOAM.}
belonging thereto can belong either to the first or the second sroup: it is not always clear in which category they should be.

They naturally only appear in the semi-atumatic exchanges and are only located in the apparatus which is used in connections completed by the telephonist.

Quantitatively they have not much significance. The sum of the three kinds of faults is a measure of the technical perfection of the whole apparatus. In conjunction with what has just been said, the staff in the exchange may be divided as follows :- -
1. Maintenance staff (C jaults).

\section*{11. Fault staff (\(S\) and \(B\) faults).}

The first staff works on its own initiative; the second works when fault reports are handed in.

The maintenance staff includes the following:
(a) Cleaning and tidving.
(b) Routine testing of switches.
(c) Inspection and revision.
(d) Control by means of supervisory signals.
(e) Control through fatult statistics.

We shall discuss these in more detail.

\section*{III. Cleaning Staff.}

Since the working of an automatic exchange depends so very largely upon many contacts of many sorts it is necessary to keep the rooms very free of dust.

Contact faultsarise through burning, i.e., electrolytic oxidation, or owing to the contact being dirty with dust.

In many cases the last stimulates both of the others, especially the second phenomenon. The dust floating in the room collects on the contacts, at first through the breathing of the relay, and, secondly, possibly collects through the electric charge of the contact points. The breathing arises through the heating and cooling of the relay coils, causing air currents to and from the relay casing.

These air currents bring dust with them or what is yet more annoying very fine particles of oily matter, arising from the lubricant, or paint and perspiration from the strongly heated coils.

The greater the number of relays which are enclosed in a relay group the stronger will be the phenomenon of breathing and the greater is the possibility of dust trouble. In a rery short time the deposition of dust occurs on the inside of the relay covers. The results of the Amsterdam fault statistics show that a large number of contact faults appeared after 5 or 6 days of dust movement or dust activity. The running and still more the removal of cables, the visits of a great number of people, blowing dust from the l.D.F. and, most troublesome of all, painting with quick dry-

\section*{AUTCMATIC TELEPHONE EXCHANGES IN AMSTERDAM.}
ing paint increase the number of faults. This can easily be seen from point L on the curve in Fig. 2. As a result of the painting of the ceiling and of a wall in the Central Exchange, the faults rose shortly afterwards so much that the percentage of faulty connections reached \(2.48 \%, 1.5 \%\) being normal.

Seeing that the phenomenon was well known, and also knowing which contacts were the most likely to suffer, the trouble was quickly removed.

Fig. 2.-Number of Fauty Connections as Percentage of the Total Number of Calls in 1925.

The same thing happened shortly after the exchange " North" was opened, which occurred unfortunately simultaneously with a heavy overload. Here also painting had just previously been done. In this case the contacts chiefly affected were the break contacts of the cut-off relays and largely those which only carried speech currents ; (among others, in the manual board selectors).

An improvement can be made here by so designing the trunking scheme that a small direct current is carried over the contact. The case is the same with the impulsing contacts of the motor interrupters. The contacts carrying direct current are not so sensitive to dust, but wear away sooner than the contacts which carry only speech and signal currents (A.C.).

It is necessary to keep the auto room as free of dust as possible. Cleaning of contacts which is necessary to prevent the occurrence of trouble if dust be present must be restricted as far as possible because of the wearing of the contacts, and because much readjustment of relays and switches would be necessary afterwards.

It is much better to avoid trouble by preventing dust in any feasible way. Regular cleaning of contacts occurs only now and then and less frequently on the contact banks of the Strowger switches.

The cleaning of the apparatus is restricted to the removal of dust from springs and relay covers (these also on the inner side) while simultaneously the clust displaced is removed by a powerful vacuum cleaner. For this cleaning, two workers are always needed, one controls the dusting brush and one controls the vacuum cleaner. Co-operation between the two is naturally required and needs effective supervision. A powerful vacuum cleaner is installed in the power room in each exchange, to which pipes are connected throughout the whole building. Portable hand blowers are also provided to blow away dust if necessary. These must not be used on switches. They only serve for the cleaning of the M.F. \& I.D.F. and are always used in conjunction with the vacuum cleaner. Even with these careful measures it is found that after each time dust is blown away an increase of the number of contacts faults is noticeable. The distributing frames cannot, however, be cleaned in any other way.

To prevent the accumulation of clust, all auto rooms are provided with linoleum on the floors, which is always kept waxed to hold the dust. The rooms are approached through double doors, and the ventilation is done exclusively through ventilators, which draw air through openings covered with flannel filters. The humidity is of much importance. With great dryness, under \(30 \%\), there is an increase of dust. This is noticed during periods of hard frost when the heating must be effective, and the air is dry. It is then necessary in one way or another to introduce vapour with high humidity. Above \(70 \%\), insulation faults begin to be apparent. For these reasons the humidity is kept between \(30 \%\) and \(70 \%\) if possible. Considering that contact faults amount to \(20-50 \%\) of the total number of faults advised 1)y the public (\(S\) faults) it is obvious that the work taken to avoid these is quite justified.

A very great improvement in the number of contact faults has been brought about through the introduction of double silver contacts. The contact spring is split, and each contact consists of two contacts side by side, each with independent contact points.

The improvement brought about by this type of contact in the impulse sender relays in C.B. 3 is apparent in the great decrease
in the percentage of ineffective connections, after the installation of double silver contacts. (See line I) in Fig. 1).

The exchange Easi, C.B. 5 is provided throughout with such contacts, which is evident from the number of contact faults.

The number of contact faults on the break contact of the culoff relays (\(t\) contact) amounted to :
C.B. \(220 \%\) of the total \(S\) fatults (with good inspection).
C.B. \(360 \%\),, ,
C.B. \(450 \% \quad,, \quad,\),
C.B. \(510 \%\),, (double silver contacts).
IV. Routine testing.

It is necessary to look for eventual faults and defects through the periodical control of the switching apparatus before they have given rise to faults during the working. The more energetically this control functions and the greater the percentage of total fatults found in this way, the less will be the hindrance which the public will experience from unavoidable faults. Much routine testing needs a big staff, and a position is reached where increase of statf produces very slight improvement in reduction of \(C\) faults.

Too many examinations of the apparatus disturbs the working and reduces the number of switches available for the traffic. Naturally the less busy hours are chosen for routine testing.

The maintenance staff in Imsterdam works from 7 a.m. to 7 p.m.; outside these hours watchmen only are on duty. The testing of switching apparatus takes place mostly between 7 and 9 a.m., i2 to 3 p.m. and 5 to 7 p.m.

There are three kinds of tests :-
First, the functioning of the switches in all levels. For this purpose there are jacks in the connections to the switches.

The faultsman inserts a tester in a jack of the group selector and raises the selector one by one 10 all rows and lets it rotate.

In the case of the ist group selectors the signals are observed at the same time. In the case of the final selectors the switch is directed to a control fault number to which the tester has been connected, to prove the working of the signals.

Usually all selectors are tested once a week in this was. Occasionally an extended test takes place, which consists in proving the outgoing trunks of a bank of each. All the contacts of any row are disconnected except one, while the group selectors of the following level are removed. The switch thus comes during rotation to a pre-determined contact, from which the trunks can be controlled. For these tests wo men are always necessary and they take a long time. Nevertheless, it is alwass done when work has been done on the selectors or the preselectors.

Second. Testing switches which are not in the normal position.

This serves to show which switches do not switch out in use. The faultsmen supervise this by investigating with a head telephone the voltage condition of the lines, at the same time all idle switches are tested to see if they are connected to battery.

This test can be done very quickly by efficient men and is done each half hour when possible. It shows up a great many of the C faults.

Third. Making complete test calls. This is done through the traffic office, mainly with other objects, yet it may also be adrantageous in the search after faults. The traffic office makes on certain days in the busiest hour a great number of test calls, say from 400 to 000 , from numbers in groups with very heavy outgoing traffic, to numbers in groups with very heavy incoming traffic, and investigates in this way the possibility of connections during the most unfavourable hours and under the most unfavourable conditions.

The tests go over all levels and all trunks by varying the test numbers. If faults are then found the switches and lines used are, if possible, held and instantly reported to the relative auto room. The cause of the fault is sought for at once. The tests are made through a routine testing office, with carefully controlled testers, so as to ensure that the defects reported in the exchange will be sought. Owing to the great number of these tests and the variety of the channels used, these tests give an accurate view of what a subscriber should experience when working without error, with good instruments in the most unfavourable conditions.

For the full automatic exchange, the faults found in this way amounted all told to \(0.2 \%\); for the semi-automatic the faults were \(3.5 \%\), of which \(1.5 \%\) were faulty numbers due to telephonists' errors, and \(5.5 \%\) to the manual board switches.

The preselectors are given no regular tests except when there is a particular reason for it. To do the whole lot regularly would take too much time. The manual board selectors are routine tested about once a fortnight.

\section*{V. Inspection and Supervision.}

An exchange is divided into 6 groups for maintenance: i.e., five of 2000 lines (ist preselectors, 2 nd preselectors, ist group selectors, manual board selectors, 3 rd sclectors, and finals) and one group taking all second selectors. In the semi-atomatio exchanges there is a serenth group comprising the impulse senders with the digit kevs. In each group there are two mechanicians and an assistant, who are responsible for the working of
the group. They work as far as possible always in the same apparatus group, doing all works, for both tests, and the search for faults. They do the necessary inspection and supervision of the switches. The first consists chiefly in following the working of the selectors in use. They are so practised that to a great extent they work by hearing and recognise any abnormality by sound.

Supervision means the systematic control of the switches and relay groups, for the purpose of adjusting all subsidiary parts, following the adjusiment details.

Formerly this supervision occurred periodically. At stated times the apparatus was withdrawn from service and tested for correct adjustment in a mounting on a bench equipped with special testing apparatus. This has usually proved unnecessary. Ai present the group switches and relay groups are only subjected to supervision when, on account of some kind of fault, they have been taken from their place for repair.

The switches are repaired in the room. The relay groups are repaired in a small work room, placed close to the auto room, where tools and parts are awailable and also a small test panel whereby the working of the relays and impulse senders can be lested in accordance with rules laid down.

This supervision and the simple repairs are done by the personnel of the group during the time when three men are present, so that two can work in the auto room and one in the workshop. This is normally between to a.m. and + p.m. See Fig. 4. It will be seen that in this way the working of selectors comes under supervision, as follows:--
ist selectors, twice per year.
and selectors, once per year.
3rd selectors, once per two years.
Final selectors, once per year.
As all selectors are numbered and alwavs stand in the same place, accurate records can be kept.

This gives good control over the quality of the apparatus and of the work of the maintenance men.

\section*{VI. Control via Supervisory Signals.}

These are (a) Blown main fuses.
(b) Blown distribution switch fuses.
(c) Late disconnection of interrupter.
(d) Congestion in groups when all available outlets to the followinger rank are busy. This is only for 1 st and and preselectors.
(c) Failure of signal interrupter, ringing current, etc.
\((f)\) Permanent loops: this is given after 120 seconds.
\((g)\) ist group selectors, where a connection is called for, but does not come to fruition because the connection is broken in the first or following ranks, or through a disconnection in a level. The alarms (a) to (e) are denoted by various coloured lamps for each section and division of 2000 lines. \(a\) and \(b\) are also given audibly.
The signal \(f\) is a lamp for every row of io first group selectors. When it lights, the faultsman looks for the relative selector, connects his test set and finds if a subscriber is talking. These signals are mostly caused by short circuits outside the exchange, which are then discovered by this method.
\((g)\) is the most significant alarm ; it consists of a small lamp on every ist group selector. There is, further, a supervisory signal per group, denoting in which thousand a signal \(g\) has appeared. These lamps are placed near jacks, through which the faultsman can enter the circuit. The signal appears as soon as the connection fails, and lasts as long as the subscriber concerned does not hang up.

The faultsmen in charge of a division during the busy hour remain near the ist group selectors. As soon as a signal \(g\) appears, he butts in and seeks for the cause of the fault. The subscriber is sometimes to blame and he can be informed. Sometimest trouble is caused while all lines in the level asked for are busy.

In many cases, however, it is a fault which the faulisman can detect by taking the rst group selector over from the subscriber, in the position to which it has been raised, and then demanding the same number as the subscriber has done. If this connection cannot be put through the switch can be held and the way in which the call has gone astray can be found and investigated.

A great number of \(C\) faults can be found in this way, which requires the continual surveillance of the faultsman. For the sake of completeness it should be mentioned that while the connection the faultsman makes may be successful vet this does not mean that no fault exists. The connection may have been made by another route. However, the faulsman is usually quick and therefore no change bas occurred in the position of the succeeding selectors needed to complete the desired connection, and the: second connection follows the same route as the first. If the fault be not found, he notes the ralled number and gives special
attention to the fact if more alarms \(g\) come from the same ist group selector. Alarms ore multipled on a desk in the exchange Inspector's office. The working of the exchange can e judged from the incidence of the glowing of these lamps, and indicates whether his presence is reguired in the auto room.

\section*{VII. Control by faull statistics.}

Fault statistics afford an indication of the standard of maintenance. In many cases they also serve directly as a means of investigating faults.

In the case of complicated switches, one cannot fully determine that they are fit for service by just testing them at the test table. When a switch fails to function properly five times out of 100 connections, it is not fit for service and yet it is quite possible that it had been found O.K. on test.

The impulse senders give a good example of this. When these are all in the same condition as regards maintenance, and the traffic is distributed well and evenly in the exchange, then for all senders the ratio of the number of ineffective calls to the total effective calls is the same, unless one of the senders has some small fault which brings it into an unfavourable situation as compared with the others.

When it is possible to calculate the proportion aimed at above for the whole of the impulse senders, which in Amsterdam can easily be done, then an average is obtained for any twenty-four hours, from which the individual figures of the switches may deviate but little.

As soon as an impulse sender shows deviations from the calculated average, which lie outside the limits of pure chance, it is switched out and again tested carefully in accordance with instructions. If it is brought hack to its place the faults must ranish, which is generally the case.

Fig. 1 and Fig. 2 show clearly the result of working in these ways. The figures show the number of ineffective calls per 24 hours in C.B. B as a percentage of the total number of calls for the period \(155^{\text {th }}\) May, 1924, to ist September, 1925.

Between points B and D the improvement in impulse senders through the introduction of double silver contacts is apparent. because the figure falls regularly from an average of \(1.4 \% 10\). \(.0 \%\).

The peaks have always some particular cause and as such are interesting.

These are to be imputed either to heary traffic or to a junction breakdown, or to special circumstances.

The cause of the faults are given below; the letters refer to letters on the figure.
1924. A. Heavy traffic at Ascension Day.
B. Beginning of improvement in impulse senders.
(. Fault in junction cable C.B.2-C.B.3.
I). End of improvement in impulse senders.
E. Fault in junction cable C.B.3-C.B.5.
F. Heavy traffic in C.B. 4 .
G. Fault in cable C.B3.3-C.B.2.
H. Heavy traffic in C.B.4.
J. Christmas.
1925. K. Heavy traffic in C.B.4.
L. Auto room painted. (See above under III.).
M. Heary traffic before Easter.
N. ,, ,, ,, Ascension Day.
O. ,, ,, ,, Whitsuntide.
P. Two manual board selectors faulty.

It is clear that in these graphs abnormal occurrences are easily separated from the normal and their influence can be predetermined. Space does not allow me to go further into this.

A method similar to that described for the senders was applied to the first group selectors in the full automatic exchange: the proportion of connections which failed due to switch faults to the total number of connections per row of 10 switches for 24 hours were also calculated.

The effect of this system of control is much better than any other testing scheme and the resulting figures may be useful at some time for other purposes.

\section*{Vili. Fault Staff.}

The fault staff has to clear as speedily as possible the faults which have been advised by the complaint office and found faulty by the Testing Operator. They are handed by the faultsmen in the relative group. The great majority of these faults are found in the apparatus particular to the lines, chiefly in the preselectors and in the final selectors.

The same procedure is followed in the case of faults adrised by the operating telephonist in the semi-atomatic exchange, which usually occur in the manual selectors, impulse senders, or digit keys.

Table II gives \% faults in group C, S and B, and of the total \(T\) distributed among the various classes of apparatus. The figures for each exchange per month are fairly constant, as can be seen from Fig. 3, though they vary slightly round the average. Also for the various exchanges, they do not vary much from one another unless special reasons exist.

For example for C.B. 5 the figures for preselectors are low as

Fig. 3.-Falet Statistics fer Exchange C.B.2.
a result of the double sifer contacts; for the ist group selectors they are high because there an impulse repeater is concerned Which in oher cases is wanting. From Table Ill we see further the distribution of faults among (., S and B: \(70-90 \%\) were found by the patrol. The high figure for (faults for C.B. 5 may be explained through the improsed preselector contacts which cause the greatest part of \(i x\) faults in other exchanges.

It is easy to see that the full automatic exchanges have fewer fatults than the semi-atomatic. The cause lies in the manual board selectors as appears from Tables II and IV. C.B. 3 suffers most ; it is the only exchange where the manual board selectors are provided with self interrupters. Fortunately they will disappear after cut-over to the full automatic system.

In conclusion, Table IV shows the proportion of \(C\) and \(S\) faults in \(\%\) for each trpe of switching apparatus, likewise the number of faults per wos swithes per month, calculated from an average over the first 9 monthe of lezs. The figures for the various exhanges do now vary much from one another and nearly all deviations lie in small differences in the build of the installations. Space does not allow me to so deeper into the question.

IN. (iraphical statistics.
The best way of watching the maintenance in an automatic exchange is to have appropriate statistics; and the most easily understood are graphs. Each individual exchange can be watched and the results compared with those of all the exchanges. Standards for the various quantities are first obtained. For unfarourable deviations one can find explanations, in order to find how to prevent these occurring.

If the cleviations are in the favourable diedion one can investigate these 10 see if the standard can be improved.

In Amsterdam 7 graphs are kept permanently of each of the various types of apparatus in the exchange, i.e., for preselectors, ist selectors, 2 nd selectors, ard selectors, final selectors, manual board selectors, digit kevs: and for a miscellaneous group not included in the others.

The seven graphs are:-
(I) C faults per ion switches per month.
(2) S ,. ,, ,. ,,
(3) B ," ,, ,, ,, ,
(4) \% of the total number of \(C\) faults.
\(\begin{array}{llllll}(5) & ,, & ,, & ,, & S & ,, \\ (6) & ,, & ,, & ,, & \text { B } & ,,\end{array}\)
(7) \(\%\) of the total number of \((C+S+B)\) faults per month.

There were also deduced graphs for
(8) the number of \(C\) faults per ioo lines per month.

The term, number of switches and lines means the working number, not the capacity.

In full automatic exchanges 3, 6, 10 do not appear. Graphs \(1,2,3 ; 4,5,6,7 ; 8,9,10\), are connected so that the total can conveniently be found. In Fig. 3 the graphs 4, 5, 6, 7, for all types of apparatus are shown for C.B.2, also 8, 9, 10 are indicated for the years 1922-1925. It is seen from the figures how far the quantities are constant, and thus can be considered as standard. Between Feb. 1924 and March 1925 , C.B. 2 was changed from semi to full-automatic. The effect can be studied on the graphs.

The fall in the number of \(S\) faults for ioo lines is noticeable.
The lines 4 show how the control has worked in the previous month and which part of the equipment has been given special attention; so one sees for example from line 4 of the preselectors that in March, 1924, more attention has been given to these. The result is visible in the fall of the line 2 and the rise of I (not given in Fig. 3) relative to the preselectors and similarly through the falling of line 9 without 8 rising appreciably. This is actually the case. After the more intensive control is continued for some time, the lines \(1,2,8\), and 9 all reach a lower level, to which line 4 also approaches, as otherwise the other apparatus would come 100 far behind. Usually the lines 4 to 7 give results for the equilibrium, that is to say, for a judicious distribution of the maintenance work on the various types of apparatus. The others show more the resultant of the activity. The falling of line i with a rise of line 2 and conversely show the transfer of emphasis laid by the maintenance staff on various types, while the same phenomenon appears in lines 4 and 5 . If this is not the case, there must be external causes for the discrepancy and these must be sought for. Probably all or at least many of the lines 1 and 2 show the same phenomenon.

Simultaneous rises in lines 1 and 2 have alwavs an external cause, which lies berond the scope of the maintenance men. ['sually any sudden rise in one of the lines is followed by a fall and conversely. With the help of graphs one is always in a position to study the effect of such influences on the other apparatus. The data for these graphs were obtained as follows: Any fault or deviation is written down on a docket by the faultsman who handles the fault.

These dockets are collected on cards and once a month added up and put in graphical form. On the cards the statistics are
given in detail, so that it is always possible to analyse further a portion and see the relation to the three categories of faults. This is done as soon as the lines show abnormalities.

The faults are divided into electrical and mechanical faults; these are again subdivided into the groups where they occurred and according to the type of fault observed. These figures are, however, by no means constant.

Sometimes special statistics are taken over selected portions which require investigation. Yet all these activities are secondary, so long as the above mentioned lines are normal. Detailed studies are only undertaken when the graphs give cause for such. It will be noticed from Fig. 3 that the lines are fairly independent of the seasons and also, within definite limits, of the traffic. The last holds also for various exchanges as regards lines \(1-7\), while the average load per switch in the exchange is the same, which is always the case if the design is good.

The lines 8 to io for an exchange with heavy traffic per line naturally lie higher because more switches per line are in use.

In the same exchange, the number of faults is independent of the traffic within certain limits, so long as the normal load on the switches is not exceeded and thus not many calls are lost. When that occurs the faults rise quickly and as soon as the critical point is reached they rise so fast that serious congestion is to be feared. The critical point lies somewhat higher than the capacity of that group of apparatus, which has the smallest capacity as compared with the traffic.

In a well designed exchange the traffic capacities of the various groups of apparatus are about the same. The critical point in C.B. 4 lies about 23000 calls per hour. For the impulse senders the conditions are different in some ways. The number of faults in these is proportional to the square of the number of connections; happily the curve of this function is very flat for normal loads.

The difference as compared with the switches is easy to understand. The impulse senders function as long as they are in use and on the average always for the same period which is independent of the traffic. The switches operate, however, only at the beginning and the end of the connection and whenever, as a result of congestion, the average duration of the connection becomes smaller, then the number of times that it is actually in active operation during a definite time begins to increase appreciably.

From that moment the number of faults increases as the square of the traffic, and rises very steeply in the neighbourhood of the critical point.

\section*{X. Staff.}

In the various competitive comparisons between systems, the maintenance staff has always played a significant role. One must here be very careful in judging the figures, because the amount of staff required does not exclusively, nor even principally depend upon the system.

There are other factors which have great influence. These can be described as:-
A. The traffic per line and the size of the telephone system in which the exchange works.
B. The limits set to the quality of maintenance.
C. Service conditions and regulations concerning working hours of staff.
D. The installation and the building of the exchange.
E. The system.
A. The greater the traffic per line so much the greater is the number of switches, and thus the greater the number of faults for an exchange of the same number of lines. In a great network with a lot of junction traffic the second selectors form such a large group that they need special supervision and more maintenance.

Whenever one compares a simple exchange with one of such a system both these factors must be remembered.
B. When a good standard of maintenance has been reached in an exchange, improvement only occurs by increasing the number of \(C\) faults and a reduction in the \(S\) and \(B\) faults. One can be satisfied with \(70 \%\) in the first category and yet can wish for \(90 \%\). The latter necessitates more work and therefore more staff.

Besides this more emphasis can be put on cleanliness in the exchange and the demands for routine testing can be reduced. The influence of this on the number of faults has already been referred to in Fig. 3.

How far must one go with maintenance?
In the first place until a reasonable minimum has been reached for the total number of faults \(C+S+B\). Then one may strive to reduce the percentage of \(C\) faults at the cost of the \(S\) faults, so long as the result obtained is relatively greater than the increase in cost.

Whenever, for example, it costs \(20 \%\) more manhours to obtain a reduction of \(1 /\) Ioth in \(C\) faults, the limit has been passed.

There is also, however, another limit. Whenever the total of \(S\) faults in the exchange has become too small, so that it has no marked influence upon the total number of faults in the network then the improvement in the proportion of \(C\) faults to \(S\) faults is useless, as it does not pay for itself.

It is no matter that different ideas exist as to the grade of
perfection of the maintenance which influence the number of staff considered necessary, and which have nothing to do with the system as such.

As an example one might mention that in Amsterdam none of the exchanges is allowed ever to be unattended, not even at night.

This avoidance of risk may have great influence upon the number of the personnel; above all in connection with what is salid below in paragraph C.
C. This factor is one of the most important.

The prescribed hours of labour, rest times, Sunday and night work, the possibility of overtime, the limits within which the work hours must be kept, all these factors influence the formation of staff in the exchange.

If one has several exchanges of dissimilar size in one area then the burdens laid upon the stalf in one exchange must not differ much from the burdens in any other, which leads to an owerstafting of the smaller exchanges. Otherwise the frequency of the night and Sunday work would become too great.

One can overcome this disadvantage to some degree by moving the staff from exchange to exchange, but this creates difficulties, above all if the exchanges are not all on the same system.
I). That the nature of the installation and type of exchange has influence upon the staff is obvious.

To have many small roons for the plant is obviously more disalvantageous than to have large rooms. If the switches of the various groups are scattered irregularly, naturally more staff is required than with a rational layout.
E. The system itself naturally has a bearing on the case. Wear, accessibility of the parts, interchangeability, the necessary number of switches and their form, the tools, overloading, these have all influence on the staff required though not to the extent one might ordinarily assume.

In conclusion, one should consider the type and age of an exhange. For example, consider the exchange with seguence switches (minor switch type) which undoubtedly reguires more maintenance than one without the continuous drive, and yet there are very good reasons for keeping this type in use. One thinks among other things of the advantage of similarity.

For the sake of completeness Fig. 4 gives a scheme of the normal staff in a fully equipped automatic exchange of 10,0 oo subscribers at Amsterdam, from which one sees the distribution of the hours of labour.

There are two groups of mechanicians, each with a foreman, one group of helpers, and one group of cleaners, unskilled workers. During the hours when both groups of mechanicians are present,
une is working in the workshop. with the exception of the mechanician who is on evening duty.

In order to even out the service staff the exchange is divided up into six groups, five of 2000 subscribers and one group of and group selectors. For each of these there are two mechanicians and a helper, while two extra helpers are provided for making up the complement of staff in the evening and at night.

The group of cleaners consists of six men, who work wherever they are required in the exchange. The total staff consists of 22 maintenance men and six unskilled workers, as appears from Fig. 4.

Fig. 4.-Normai. Staff in io,ooo Line Automatic Exchange.
One must look at this scheme in the light of what has gone before, and not consider it as the only one, or as the best for the normal case. It has been evolved for the specific Amsterdam case and requirements. Apart from and alongside of the maintenance staff of the exchange, there is a group of erectors. These are used for the installation of modifications, small extensions, large repairs and if necessary are available for assistance of the exchange staff in the case of long sicknesses and similar absences of several maintenance men. Service in this group is at the present time the practical opening for new staff.

\section*{AUTOMATIC TELEPHONE EXCHANGES IN AMSTERDAM.}

\section*{Table I.}

VARIOUS FIGURES.

h. \(=\) halfautom \(=\) semi.automatic.
\(\mathrm{v} .=\) volautom \(=\) full automatic.
Table II.

Table III.

Table IV.
Mervge ncuber of falilts per ion

\title{
TIME SAVING TESTERS FOR AUTOMATIC EXCHANGES.
}

\author{
By W. Prichett and H. S. Smith. \\ Enginetr-in-Chief's Office.
}

The introduction of devices which effect labour saving to the extent of over \(80 \%\) is regarded in the commercial world as a considerable gain, but the development by the Department of automatic methods of testing, as compared with manual methods, showed that this figure could be increased to over \(90 \%\).

Experience has proved that the former figure was easily reached by using tester " A " (described in the last issue of the Journal) for line switch tests in automatic exchanges. Tester " A," however, although testing automatically each outlet from a lineswitch, required the attention of a testing officer in order to make connection in turn to each of the subscriber's equipments to be tested. Tester No. 56, now to be described, obviates this necessity and makes the transfer automatically to the next line when the tests on the previous one have been satisfactorily completed. This process applies to the whole of the lines available on the multiple on a subscriber's unit, i.e., 100. The testing officer's attention is required only for the commencement of the tests on the first line and for the removal of the tester to the next unit when the last line has been tested. He is thus able to proceed with other duties and need only attend to the tester in the event of its stoppage indicating a fatult. The actual time occupied by the tester, in completing the j000 tests required on a unit equipped with roo line switches, is 50 minutes.

Tester N•. 56.-For Testing Line Switches (non-homing) type) and associated Outlets to Selectors.

Tester No. 56 consists of two parts-the testing apparatus itself and a special selector. The latter is mounetd as required on a spare bank on the multiple side of a subscriber's unit and is used to make connection to each subscriber's line in turn. The testing apparatus includes two preselectors, one of which acts in a similar manner to that in Tester "A." The other is used to make the appropriate connections to the line connected by the special selector.

It is required to verify that the wiring and operation of the subscriber's line switches and associated outlets to selectors are in order. The tester, the connections of which are shown in the diagram, is designed to test each outlet twice in order to use each end of the double wipers with which the line switches are equipped.

Before commencing the test it should be verified that all equipped line switches are connected by means of straight jumpers to corresponding numbers on the multiple.

To commence the test, the special selector is mounted on a spare multiple bank and its wipers set to the normal position, which is special to this switch, on contacts 1 of level 1 . The selector is connected to the tester by means of a test plug, and battery and earth are supplied via the usual contacts on the switch jack. The twenty-five clips provided for the purpose are connected, in order, to the \(P\) wires of the outlets on the terminal assembly on the line switch side of the unit.

Battery and earth for the tester are obtained via a cord and plug and the unit power jack.

All line switches and the tester preselectors should now be set to contacts i.

Keys 2, 3 and 1 are then thrown in this order.
The effect of key 1 is to step on preselector 2 to contact 2. The circuit is from battery via DM2, interrupter springs, wiper i contact 1 of are 1 , key i op., Ci nor and Di nor to earth.

Key 2 connects relays \((\mathbb{C}\) and 1) via contacts 2 of ares 3 and 2 to the + and - lines in order to provide a lest for faulty operation or failure of the line switch cut-off relay (BCO). The latter should be operated via contacts 1 and 2 and wiper 4 of preselector 2. If the BCO relay has operated correctly, the + and -
lines will now be dear and relays (\(\mathrm{C}_{\text {a }}\) and 1) should not operate, thus allowing preselector 2 to step to contacts 3 as before. If, however, either the line relay or earth has not been disconnected by the cut-off relay, relay (or 1) operates and prevents rotation from contacts 2.

Relays \(A\) and \(B\) are connected by key 3 to contacts 3 of arcs 3 and 2 , and when preselector 2 reaches these contacts are extended by wipers 3 and 2 to the line circuit. The BCO relay is released when wiper + raches contact 3 and allows the line relay and earth to be restored to the line circuit. If there be no reversal in the lines, relays \(I\) and \(B\) and the line relay now operate. The line relay should catuse the line switch to seize the first outlet and extend the line circuit to the selector connected thereon, relays A and 13 in the latter being operated, causing a guarding earth to be placed on the private wire.

The operation of relats \(X\) and \(B\) connected battery via a \(15^{\circ}\) ohm resistance at \(\mathrm{A}_{1}\) op, and \(\mathrm{B}_{1}\) op. to relay E. Relay E operates via wiper 2 and contact 1 , arc 2 of preselector 1 to the earth on the outlet P wire. As, however, relay E is slow to operate, time is allowed (1) to ensure that the operation of relays \(A\) and \(B\) is maintained \(B\) y the selector \(A\) relay being connected, whout reversal, wia the outlet and (2) for the line switch line relay (o) release, ensuring that the earth on the private is that supplied by the selector.

Relay E, operating, prosides a holding circuit for itself at E3 op. and disconnecas relass A and 13 at Ei op. and E2 op. to release the selector and cause the holding carth to be removed from the private. It also energises DMi at E4 op.

Provided that the line switch line relay is not sticking, so maintaining the earth on the P wire, relay E should in due course release and, disconnecting DMı at Eq nor., causes preselector 10 step on to contacts 2 , in which position wiper 3 busies the \(P\) wire of outlet 1 against further use.

The tests are now repeated on the line switch, but as outlet is buss, the wipers should be rotated to outlet 2 , which should be seized. As relat E is now connected to the P wire of this outlet sial contact 2 of are 2 , the seguence of operations should be repeated and if the outlet be O.K.. it will in turn be busied and the test transferred to outlet 3 .

This process is repeated until each oullet has been tested wicc, i.e., with each end of the double wipers.

When the fiftieth test is being made, relay \(F\) is connected via contact 25 of arc 1 and, on the operation of relay \(E\), receives sufficient current to operate.

Relay F steps-on preselectors I and 2 via \(\mathrm{F}_{\mathrm{I}}\) op. and \(\mathrm{F}_{2}\) op. and the special selector via \(\mathrm{F}_{3}\) op.

The latter now makes connection to the second line switch to be tested and the sequence of operations is repeated.

This process continues until the tests have been completed on the tenth line, when the ensuing rotary step of the special selector operates the cam springs \(S_{i}\), energising the vertical magnet via R1 up. This causes the selector to step up to level 2 and then, on the release of the rotary magnet, springs \(\mathrm{R}_{\mathrm{I}}\) return to normal and the release magnet receives an impulse and releases the rotary dog, which allows the wipers to rotate back to contacts i. Connection is now made to line 21 and the tests proceed as before.

This action is repeated on each level of the subscriber's multiple until the whole of the line switches equipped on the unit have been tested, when the tester comes to rest with the wipers of the special switch above the bank.

The special selector and tester connections are then transferred to the next unit to be tested and so on throughout the exchange.

In cases where units are not completely equipped with line switches, the tester will stop when an unequipped line is encountered and the special selector is stepped on by hand to the next equipped line.

Attention is drawn to faulty lines by the tester ceasing to work and an indicating lamp glows to provide a rough indication of the nature of the fault. Thus, faulty operation of the cut-off relay causes a red lamp to glow, while trouble on the + or - lines is indicated by white lamps, and failure on the outlet by another red lamp. The application of these lamp signals is similar to that indicated in the schedule given at the conclusion of the previous article on Tester " A."

\title{
TELEGRAPH AND TELEPHONE PLANT IN THE UNITED KINGDOM.
}

TELEPHONES AND WIRE MILEAGES, THE PROPERTY OF AND MAINTAINED BY tile post office, in each engineering district as at marcil aist, 926.

\section*{A NEW TYPE OF FUSE MOUNTING FOR THE TERMINATION OF TRUNK, JUNCTION AND TELEGRAPH CIRCUITS.}

\author{
A. O. Gibbon, M.I.E.E.
}

A high standard of insulation resistance is required by the British Post Office in connection with all underground cables used for telephone and telegraph purposes, and this is particularly the case where loaded and balanced Trunk cables are concerned. Great difficulty has been experienced in the past in obtaining the same degree of insulation resistance at the terminations of these cables at Main Distribution Frames, and also at testing points.

In the case of loaded and balanced Trunk cables it has been the practice to terminate the cables on an auxiliary testing fitting known as a "Trunk Testing Tablet." This fitting is made of " A" quality ebonite, and is of the " E " Link pattern, accommodating is circuits per tablet. The Test Tablet provides for a high standard of insulation, and also affords a ready means for the interception of circuits for testing and cross-connecting purposes. There are, however, certain disadvantages associated with the Test Tablet. It requires a special frame for mounting purposes and the complete installation takes up a fair amount of space; the Test Tablet is also exposed to the air, and loss of insulation follows because of the presence of moisture and also the accumulation of dust on the fitting.

For the termination of Trunk cables which are not loaded and balanced, also in terminating Junction cables, a fitting known as "Fuse Mounting No. 4oor" has been used. This fitting has a

Sheet Iron hase, and is lixed th the Main Distribution Frame. It suffers from the same disadrantage as the Trunk Test Table in that it is exposed to the atir, whilst, in addition, the foot litting does nod provide facilaties for the periodial rombere testing of (ercuits from the Main Frame.

The design of a compace berminating arangement which will prowide for a hierh sandard of insulation resistance has been moder investgation for some time and, after a series of experiments with different models, the Liandard Fehephones and Cables. Lid., have recently patentad a sperial Fuse Mounting on the

Fik. 1. Fuse Moumtin: No fozs.
" Grid-Gate" principhe. This momming has been desismed with the following oljejects in riew:-
(1) Toprovide a hish degrex of insulation resistance compatable with that of the cable aself.
(2) Toprowide a ready means of testing and cross-ronnecting cercuits, both on the line and lixhange sides of cable.
(3) To protect the fitting from insulation losses due to moisture and dust, and also to prevent mechanical injury.

The new fitling is known as "Fuse Mounting No. foz8." It is of approximately the same dimensions ats Fuse Mounting No. 400r, with which it is interchangeable on Main Distribution

Fig. 2.-Fuse uspi on Fuse Mounting No. fozS.

Frames. The monnting accommodates 20 pairs of wires on the line and apparatus sides and is a compact fitting. Tesas for insulation resistance have yielded results in the region of 30,0 on megohms between adjacent tags.

The mounting is made up in the form of a double hinged gate: Fie. 1 shows the fitting in the open peosition.

Tiwo vertical wooden famming strips marloed " " " in Fig. I are fised to the hase of the mownting. Bemwern these strips and hinged to them is a medal plate, or lus, which is shaped and bored for fixing th Mat Mrame. This is shown charly in Fig. 5.

1 Erid or salle consistins of four vertical ebonite strips is
 of these strips are marke: " \(b^{\prime \prime}\) in Fis. I). Fose-holders are wamped to the outside of the eronite strips, and the soldering lass are comanted whe theside of the billins, where all the wiring
 Kinfe-blade foses are fixed th the outside of the fitting.

It will thes be seen from Fig. I that all the wiring connections
 from the ounside.

 the eable patars, and of ber the wiringe on the appatatus side. The:

 the apparatles side. This is shown all "o" in Fig. 1.

The holes adjacem to the vertical ebonite strips on eatch side are bised for the cable conduciors, has a and blate fellowing consectuisely from w! whom. Sere "f." Fig. 1. The wo rows of holes neares the melal plate, between the two fanning strips, are used for the apparathe witing in the same conserume order. This is shomon all "r or \({ }^{\prime \prime}\) in Fig. 1. By his arangement

\section*{}
ang crossing of the wires imside the litiong is aroded, and each side of the mounting serves to dircuits both on the line and apparatus sides.

I special trpe of knife-blade fuse has been designed for use whe the fitting, and these are carrided means of the fuse boders refered 60 abose. The fuses are arranged in alternate positions on the ebonite strips, so that a spacing, rentre to centre, of \(11 / 16^{\prime \prime}\) is , ohtained, whilst athe same time keeping the mounting in at compact spate. The fuse consists of an ashestos cowered wire, se in a sloted strip of fibre. . We each end, the fuse wire is connected

We a screw to a lat tinned copper sherem, which is knife-shaped for insertion in the fuse hoder. Dedails of the fuse are shown in Fig. 2.

The spreat of the momenter in its open gate position is limited,
 making metallic contan horough the fuse holders. . I further sateguard in this resped is prowided by means of four ebonite stops. This is shown al " \(h\) " in Fig . 1.

Fasteners are provided at the wop and botom of the mounting to maintain the closed position before bixing the dust proof cower.

Fig. 3 shows a front closed view of the momting; Fig. 4 a side closed view; Fig. 5 a back view, with the plate for connecting to the Main Distribution Frame, whilst the mounting enclosed in its dust proof metal coser is shown in Fig. 6.

Fig. 6.-Mounting in Dust Proof Metai. Case. Suown Horizontaliy.

The new type of fuse mounting will be fitted in place of the Trunk Test Tablet in all fulure cases and will effect savings in the cost of terminating loaded and balanced cables : space will also be saved in Exchange Test Rooms.

The new mounting will also be used at Telephone Exchanges where unloaded, non-balanced Trunk cables, Junction cables and Telegraph cables are terminated.

\section*{THE PASSING OF BLACKFRIARS POWER STATION.}

Provision was made in the Aat authorising the construction of the P'ost Office (London) Railway that tenders should be invited for the electric power required for its operation. As the Railway load by itself is not of a very favourable nature it wats decided to invite tenders for the whole of the supply reguired for the P.O. Headquarter buildings-formerly supplied from Blackfriars Power Litation-plus the estimated reguirements for the Railwaty, and invitations were acoordingl! sent to all the athorised Under-

Fig. 1.-Supply Companies' Sub-Station.
takers in the districts through which the Railway passes. The ultimate reguirements were given as \(10,600,000\) units per annum with a maximmon load of 3 , gex kilowatts. Keen competition to secure the load enstued and eventually the joint tender of the Coty of Iondon Electric Lighting Co. and the Charing Cross E:lectric Supply Co. wats accepted and an agreement for a term of 2.5 years negotiated. The agreement provides for a variation in the price of power depending on the cost of coal or other fuel, and also for extra payments if a fixed maximum demand is exceeded during certain hours in the winter months; the batteries in the P.O. sub-stations will be used to reduce this as far as possible. Pay-
ment is made per kilo-volt ampere-hour, thus protecting the supply companies against the Post Office using current at a low power factor.

Under the terms of the agreement the Post Office provided the Companies with a sub-station in King Fedward Building Basement, adjoining the existing Post ()ffice sulb-station. In this sub)-station the Companies installed wo banks of transformers with the necessary E.ll.T. switchgear, each bank being capable of dealing with 3.750 kilowatts and supplied with independent mains direct from Aldersgate subs-station of the City of London Company and Ludgate sulb-station of the Charing Cross Com-

Fig. 2.-Clome mp View of F. H.T. Switchaear.
pany. The supply is brought in at 10,600 volts 3 -phase \(5^{0}\) periods and trasformed down 10 6, 6 oon volts, which is the Post Office E.H.T. voltage and is metered ath this latter volage. A general view of the Companies' subs-station is given in Fig. 1, and a close up riew of the E.H.T. switchgear in Fig. 2. Direct telephone commonication is prowided between the Companies' sub-station and the generating stations at Bankside and Bow, respectively, and also the Post Office sub)-stations.

The supply at \(6,(600\) volts is led to the P'ost (Office sub)-station, in which additional E.H.T. switehgear hats been installed to receive it; this was supplied by Messrs. Ferguson, Pailin \& Co.

A view of this switchgear is given in liig．3，and of the metering pancls in Fig． 4.

The Post Office distribution system consists of sub）－stations all G．P．O．（West），Mount Pleasamt，King Edward building and G．P．O．（South）；in addition there are 1 wo subs－stations on the Railway，at Western Parcel Office and Liverpool Sireet．G．P．O． （ \(\mathrm{N}^{\text {eest }}\) ）and Mount Pleasant supply direct current only and are equipped with rotary converting plant with a large battery of accumulators in each case：King Edward Building and G．P．O． （Souh）are equipped with static transformers and supply alter－ nating current only．（）n a failure of supply accurring，the I）．C．

Fig．3－Admitional．民．h．T．Switchgeak in P．O．Sub－Station．
supply at G．P．O（West）and Mount Pleasant is maintained from the accumblators，and at the same time the rotary converting plant is reversed，supplying back A．C．10 Kiong Edward Building and（a．le（）（South），as has been done in the past when black－ friars was operating．The batteries are capable of manataning this supply for about hour al full lighting load，the main power load，such as the pnemmatic plant and Railnaly being aluto－ matically tripped：in addition emergency steam plant th the （x）em of \(f(x)\) kitowatts is installed all Mount Pleasams．The Companies stipulated that under no conditions must their awn supplies be joined in parallel：we supply is therefore taken from
each Company during alternate months, except in the event of a failure, when the supply is changed over as may be required. The change-over is effected by taking the incoming supply to Mount Pleasant on a spare feeder; it is then synchronised on the E.H.T. side with the rotary plant, which is running reversed off the battery.

The change of supply involved considerable alterations 10 the existing switchgear and cable system; the first was carried out by the British Thomson-Houston Co. and the latter by Messrs. W. T. (iloser ※ Co., additional switchgear was installed at (B.P.(). (לouth) by Messers. Reyrolle \(\mathfrak{d}\) Co., and an additional

Fig. 4.-Metering Panels.

Feeder to Mount Pleasant by the British Insulated \& Helsby Co., in each case to the Department's specifications.

The supply was first given by the Companies on February gth, 1926, Blackfriars Power Station being held in reserve for a fortnight until the new arrangements were prowed satisfactory; no hitch occurred in the changeover, and the whole supply has been taken from the Companies since the above date.

It is interesting to recall that Blackfriars Power Station was started up in the atumon of 1 goto and has operated uninterruptedly since with only a few minor failures. At the time of the opening of the station it was larger than many public supply stations, and
during the whole of its life has compared very favourably with stations of similar size both as regards output and economy of operation. Owing to the enormous growth in modern electric supply stations, Blackfriars became comparatively a very small station and, naturally, was unable to compete in operating costs with stations of 40 or 50 times its capacity equipped with large modern generating units. The station has jusified its erection, both from the point of view of economy and security of supply during its life of \(15 \frac{1}{2}\) years, including the war period and the troublous times that have followed it; without it there is no doubt that the Supply Companies would never have offered such favourable terms as have now been obtained.
lt will be seen from the above description that, while Blackfriars Power Station has now been closed down, an extensive and very important distribution system including six substations remains to be operated by the P.O. Engineers.
E.H.W.

\title{
THE TRAINING OF OFFICERS OF THE BRITISH POST OFFICE ENGINEERING DEPARTMENT IN PRECISION TESTING OF UNDERGROUND CABLES.
}

\author{
By A. B. Morice, B.Sc. (Eng.), A.M.l.E.E. and \\ A. Morris, A.R.C.S., A.M.I.E.E.
}

FOR a number of years, courses of instruction in precision testing of underground cables have been held, from time to time, in the Research Section of the Engineer-in-Chief's Olfice. These courses were commenced in 1920 in order to provide special training for suitable Engineering Officers so that the efficient maintenance of the underground telephone cable system of the United Kingdom could be successfully carried out.

The reasons which led up to the decision to use air-space, paper-insulated, lead-covered, underground cables for the longdistance telephone system of the United Kingdom are detailed very fully in a paper read before the Institution of Electrical Engineers*. In Fig. 14 of that paper there is shown the proposed system of underground cables then in course of construction. At first the special maintenance testing of these cables was carried out by Research Officers, but as the scheme progressed it was recognised by the Lines and Telegraph Sections of the Engineer-in-Chief's Office that an adequate staff of trained Officers in the

\footnotetext{
* Sir William Noble: "The Long-Distance Telephone System of the United Kingdom," Journal, I.E.E., April, 1921, Vol. 59, p. 389.
}

Districts was necessary in order 1 oundertake the maintenance of the extending network of cables. This need has been met, as occasion demanded, be the special courses of instruction about to be described.

Up to the present about 100 Officers, selected from all the Engineering Districts, hase altended courses of training at the Research Section and consequently there exists in each District a number of Officers specially trained to deal with the testing and maintenance of underground cable:

The subjects dealt with in these courses may be broadly described under the following lwo headings:-

\(1924-5\) Class. Mr. Morice is the sinth figure from the deft in the front row, Mr. Morris the seventil.
(A) Maintenance tests and localisation of faults.
(B) laalancing and acceptance tests.

Originally, separate classes were arranged in each of these subjects, but in the last \(1 w 0\) classes held, viz., those in November, 192-t, to February, 1925 , and in Xovember, 1925 , to February, 1926, both subjects were dealt with during one period of instrurtion. By means of a series of lectures, pratical worls in the laboratory, and tests of cables during and after completion, it has been the endeavour to give a complete course of instruction is: the latest and mosi precise methods of testing modern batanced and loaded cables of high insulation resistance.

The wo photographis show the members of the classes just
referred to, and a detailed description now follows of the courses of instruction given to them.
(A) Maintenance I'ests and Localisation of liaults.

The mosi important maintenance tests for a paper-insulated, underground cable are, undubbtedly, insulation resistance tests. If this resistance remains alt a salistactory figure, it can then be concluded that the dielectric is dry throughout the cable length and alson that mosi probably the lead sheath of the cable is in a perfectly sound condition.

The minimum insulation resistance specified for these cables during construction is 10,000 megohms per mile per single wire.

1925-6 Class.
when tested against all other wires in the cable earthed. It is very necessary to maintain this figure and it will therefore be apprecialled that hirst-class maintenance testing is required.

It is of great importance that the regular maintenance tests should detect an insulation fault in its early or incipient stage and that suitable localisation tests should be made speedily in order to clear the trouble before it has had time to extend.

Periodical maintenance tests are made with a soo volt constant pressure, motor-driven mesger. The maximum scale reading of this instrument is toon megohms. so that the presence of a low insulation fatul, even in its early slage, can be detected.

Methods have been developed in the Research Section and
were given in this course of instruction by which it is possible to make an accurate focalisation of an insulation resistance fault in its early stage of development. The fault resistance is then of the order of sereral hundred megohms and, consequently, does not interfere with the traffic of the cable. By removing the fatult in its incipient stase considerable eoonome is effected by aroiding the loss of revenue which would be calused by a complete breakdown and also by bimiting the extent of the damage catused by the fault and the conseduent cost of repair. In some cases the early elimination of a fault in the cable sheath may save a complete cable length from irremediable damage.

In order to illustrate the kind of insulation resistance fault Which can be localised and chared by rained officers in the Districts an example will now be mentioned. I fault of 500 megohms existed on one wire of an underground cable 1 oo miles long. The weight of the conductor was boo lbs. per mile and the fatult was localised to the nearest joint between \(1 /\) toth mile cable lengrlis.

This maintenance course dealt with all the different kinds of faults which may be met with in practice and suitable methods of localisation were described. The limitations of the various methods as well as the precatutions on be observed to ensure acumate results were fully deall with. Insimution was also given in the order of makinge localisation tests so as to obain precise results in the shortest possible time.

The prelminary work of this course was of a mathematical nature and was arranged to provide sufficient information so that the solution of general hridge nemorks used in electrical testing could be carried out in a medoodical manner. It was necessary for those attending the course to have reached a clearly defined stage in their mathematical studies if full beneft was to be derived from the instruction given. In the case of those members of the class whose mathematical kowledge was insufficient, information was given which enabled them to gain the necessary knowledge be private study outside the class hours.

Dfer the mathematical work had been thorowghe srasped and a number of examples worked out in detail, the electrical testinge work was commenced. The following sillabus will give a general idea of the ground covered by the maintenance testing and fault localisation course:---
(i) Theors of determinants and rules for their solution.
(2) Application of determinants to the solution of simultaneous equations.
(3) Kirchoff's Laws and the solution of bridge networks be means of determinants.
(t) Measurement of Insulation Resistance - possible
methods and standard method for maintenance testing.
(5) Description of motor-driven, 500 volt megger, including preatutions to be obserred in its use particularis on coil-loaded cables and the uses of the gmard terminal.
(6) Measurement of Conductor Resistance--loop, singlewire, and differential tests.
(\%) Localisation of simple low resistance Fanth Fault and of Contact Fault by means of (a) Varley, (b) Murray loop test.
(8) Description of I).(`. precision testing apparatus.
(9) Localisation of Low Insulation (Incipient) Fault in long cable-general case with Varle test, lines of equal or unequal resistance, testing from one or both ends and fatuld in three stages of development.
(ro) Actual connertions for Varleg test for Low Insulation (Incipient) Fatult-- precatuions in testing, errors 10 be guarded against, elimination of earthed battery, double-ended test without discharging rable between lests, etc.
(ri) Localisation of Low Insulation (lncipient) Fault in short cable-general case with Murray test, lines of equal or unequal resistance, testing from one or both ends and fault in three stages of development.
(12) . Actual connections for Murray test for Low Insulation (Incipient) Fault--precautions in testing, errors to be guarded against, effect of resistance of resting leads, etr.
(3 3) Description of \(X .(\). precision testing apparatus.
(1+) Localisation of Disconnection Fatult in lones cable by I).C. hallistic test:.
(15) Localisation of Disconnection Fatula in shont cable by A.C. rests.
(if) Localisation of High Resistance (Copper) Fault in long cable by D.C. tests.
(r7) Localisation of High Resistance (Copper) Fault in short cable by A.C. tests.
(IS) Localisation of Complete Breakdown in cable.
(a) Tests from the ends on long cable.
(b) Tests on short cable, including A.C. search coil lest.
(19) Regular maintenance tests and rable rerords.
(20) General directions for localisation of faults, including order of making tests, tests on the road, ete.
(21) Practical tests in the laboratory, e.g., localisation of
artificial low insulation fatuls of 20 to 500 megohms， localisation of artificial disconnection faults，etc．
（22）Localisatuon of actual cable faults．
Bach Engrineering District has been provided with at least one set of precision testing apparatus so that the maintenance and fault localisation tests can be carried out be trained Officers．The work of these Officers，in conjunction with each other and with those responsible for the cable construction and repair work，has resulted in a high standard of maintenance of the underground telephone cable system of the Linited Kingdom．
（B）Cable Balancing and Acceptance Tests．
The work of this course was directed to instructing selected members of the Stalf of each Engincering District in the field－ constructional operations relating to batanced and loaded trunk cables．

In describing the soope of this portion of the work，the operations involsed in the fied construction of the Deparments modern trunk cables will be briefly described，particular reference being given to the testing work performed at each stage，since it was in respect of this testins work that the special instruction was furnished．

The Departments trunk cables are，in the general case，manu－ factured，drawn into ducts and jointed into loading coil sections be Cable Contractors．Electrabl balancing for the purpose of securins interference immunits and longitudinal uniformite of the line constants is effected during the jointing stage of the work，on the completion of which the lading coil sections are submitted by the Contractor for acceptance by the Department．

The balancing methods adopted by British Contractors follow generally the standard practices of the Department．

Descriptions and theoretical explanations of these practices constitute the major and most important portion of the work of this course．Capacity and conductor resistance balancing，for the elimination of cross－tall，and mutual capacity balancing for the promotion of longitudinal uniformity of cable circuits were dealt with．The instruction furnished in this branch was complete and was framed so as to permit，when necessary，of cables being drawn in，jointed and balanced by the Department．Such work has in consequence been successfully performed on more than one subsequent occasion by the trained \(\dot{S}\) taff of the Districts．Further－ more，in those cases where damage to a cable has resulted in replacing lengths of cable being required，the loading coil sections involved have been rebalanced by such local staff．The operations involved in these cases are always more difficult than in the case
of new constructional work and are frequently rendered rather involved and complicated by the necessity for keeping dircuits working through the cable during the progress of the work. The adamage of having staff araitable in such cases who possess familiar knowledge of the original construction, and of what will be involved in the work of restoration, has been frequently demonstrated. Such cases of breakdown have been expeditiously handed from the ouses, the temporary restoration of service being carried out in such a manner as to facilitate to the greatest possible extent the subsequent permanent repair work.

Up 10 quite recently the acceptance of loading coil sections from Contractors has been carried out wholly by special testing staff under the control of the Research Section of the Engineer-inChief's Office. Trained staff, equipped with the necessary apparatus, is now available in the Districts for the execution of this branch of the work. In addition to insulation and conductor (loop) resistance tests, capacity unbalatace, resistance unbalance. cross-tall; and mutual capacity measurements are made. Ful? instruction in these tests was furnished in class, whilst the practica! work of the course provided for each officer being attached for a period to a headquarters group actually engaged upon such testing operations.
()n acceptance of the loading coil sections the loading coils ate inserted, generally by the Deparment's own workmen, under the cupervision of the Superintending Engineers. In the case of side circuit loading onle, this work proceeds systematically 10 completion without the necessity for further special testing other than regular insulation, conductivity and tapping-through tests. On completion, end-o-end or final tests are made prior in bringing the cable into service. These final tests involve special measurements for inductance, cross-talk and noise, and transmission efficiency. The inductance tests are intended to check the freedom of the coils from deterioration due to the inadvertent passage of large currents, reversals of coil windings, the preservation of the Multiple Twin formation of the cable through the coil casei.e., freedom from split pairs and split cores-and wenerally the correctness of the loading operations. The transmission or speaking efficiency tests, by comparison of a number of cable loops with an artificial cable, enable the areage attenuation and the terminal loss values to be computed. Instruttion in such tests does not normally form part of the cable balancing course, but in som: cases where time and other circumstances were farourable, lectures were given and opportunities afforded for practical work on completed cables.

In the case of long-distance side- and phantom-Ioaded cables it is necessary to secure a greater degree of interference immunity
than in the case of short, side-loaded cables. This is attained by crossing methods at joints between groups of loading coil sections and coils, the actual mode of connection being determined by the results of cross-talk switching tests. In this case also, detailed class instruction could not always be arranged. The best that could be done in this connection was to provide for brief lectures and a measure of actual work on the road for those officers whose duties in their own districts included the control of stafi engaged upon the making of such joints or otherwise handling such cables, e.g., during the carrying out of the aloove mentioned group tests or during maintenance operations.

The following brief syllabus outlines the work of the Cable Balancing and Acceptance course :-
(1) Mathemalics. I brief review of elementary mathematical processes with special reference to vectors.
(2) Elemenlary Alternating Current Theory. Simple sinewave alternating current representation. Impedance and Admittance regarded as vectors. Resistance, Reactance, Conductance and Susceptance. Equivalent direct impedance and admittance networks. Application to direct capacity networks. Solution of impedance and admittance bridges of \(N\) members by reduction \(10+\) member networks and use of Wheatstone principle.
(3) Cable Balancing. Capacity balancing for interference freedom, along the lines of T.I. XIX. Conductor resistance balancing. Balancing for limitation of circuit and of length deviations of mutual capacity. Rebalancing methods suitable to different conditions of cable failure.
(.t) Scceptance of loadinge coil sections of cable. Descriptions of apparatus and methods of measuring insulation resistance, conductor resistance (loop and unbalance), capacity unbalance, cross-talk and mutual capacity with special descriptions of Post Office Trunk Cable, Conductor Resistance (loop and unbalance), Capacity Unbalance and Cross-Talk Testing Sets and their associated equipment. Mutual Capacity bridge.
In addition to the foregoing some general information relating to these courses will be given.

The members of the courses so far held have been selected by Superintending Engineers. In Mar, (123, when a number of officers were required to staff the Theadquarters testing groups, suitable men were chosen on the result of a written examination. Of 300 randidates, competing from various parts of the country,
fo were so chosen and subsequently given a suitable course in the work which they were required to perform. They were then allocated as assistants to testing groups and many have since qualified themselves to take charge of a testing unit.

The courses have been given to staff of various ranks from that of Assistant Engineer to Skilled Workman, and they have been adapted as far as possible, from time to time, 10 meet the special needs of the officers concerned. The methods of explanafion and the amoun of preliminary work has also been varied to suit the scientific and technical attainments of the members of the several courses which have been given.

In those cases where by reason of the rank of the officers attending a course their normal duties would be largely of a supervisory character, much more general ground relating to the irunk system has been corered and particular attention has; been given to the organisation aspect of the work. In other cases the need has been for considerable detail in the testing, recording, selecting and scheduling aspects of cable work.

The writing of lecture and laboratory noses has been provided for. The books have been examined and coreeded from time to time and on completion of the courses. Close touch between the lecturers and their assistants and the members of the class has been mainained with rery beneticial results.

Present day policy shows some tendency to the placing of cabling contracts involving manutacture, jointing, loading and terminating to completion. By this means it is hoped to relieve the Department of much of the testing work at present carried out. The staff will still, however, require to keep thoroughly up-to-date in this constantly developing aspect of communication work, since they will be closely concerned not only with the inspection of such work in all its consiructional stages, but also with the subsequent maintenance and working of the system.

Athough no mention has been made of the testing of guttapercha and balata insulated submarine cables, yet some of the officers who hare attended the classes have had to deal with the maintenance testing of suct cables in their normal duty. In such cases, some time has been spent in dealing with this important branch of cable work.

In conclusion, it will be noticed that, up to the present time, the classes have been held intermittenth and only on such occasions as the need for the immediate services of trained staff arose. It is the opinion of the authors that the future adequate maintenance of the cable system of this country will necessitate the training of suitable officers as a regular feature of the Department's policy.

It will also be observed that the scope of the courses so far
given has not included the special line requirements of repeatered cables. In the acceptance of such cables, impedance-frequency lests of the circuits ate necessary to prove their satisfactory lengthuniformity. Special cross-talk tests to cover the cable and the repeater stalion line apparatus. as well as overall efficiency tests to cover the behatiour of the line under the energised conditions of the repeaters, are also essential. The maintenance of such circuits will include a similar series of tests, the checking of line balancing networks and of repeater gains. The necessity for trained staff to deal with this aspect of the work is obvious and it is suggested that the need could very well be met by a course along the lines of the Cable Maintenance and Balancing courses described in this article.

\section*{ACCIDENTS ON DUTY.*}

\author{
By R. A. Jones.
}
()Ne of the most striking phenomena of the industrial history of the last hundred rears is the anselioration of the conditions of emplo:ment of the worker. The exploitation of child labour, excessively long working hours, and insanitary, unsuitable and inconvenient work places are but a few of the evils which have been removed or remedied by legislation, and in such enactments as the Factory and \(\$\) orkshop Acts regulations have been made for the protection of workers from the dangers of their work, wheher arcident or occupational disease. In addition to this beneficent artion on the part of the State many large employers of labour have supplemented statuory provisions by the introduction of welfare, safety first and other movements for the preservation of the health and lives of their emplovés during working hours. Ind further, it is now recognised that mechanical means of promoting industrial efficiency are insufficient unless the human factor in all its variations is taken into account--hence in the scientific management of industry, which has for its object the increase of oupput, questions of fatigue and unrest have become the study of experts.

In these movements for the protection of the worker phesical injury or disability arising out of or in the course of his employment is regarded as a menace to his general well-being, and, as any reduction of his general well-being lowers his standard of effectiveness, industrial acridents must in their results be counted

\footnotetext{
* A paper read before the North Western Centre, at Preston, on the 30th November, 1925 ; and before the Northern Ireland Centre on the 9th March, 1926.
}
as a form of inefficiency inasmuch as thes cause labour losses and therefore entail unproductive costs.

To the business man the rate of protit is the measure of efliciency. In the Post ()ffice Engineering Department efficiency is not measured by protit qua protit, for as Mr. John Lee says in his "Economics of Telegraphs and Telephones," "It is worthy of notice, as of national interest, that it is perfectly clear from the preamble of the Telegraph Act of 1868 that there was no intention whatever of making a prolit out of the telegraph service, but only an intention of making the service more rapid and more widely extended," our measure of efficiency is the due provision of satisfactory engineering services. Nevertheless, it is required of public servants entrusted with public funds strictly to administer and control expenditure upon the public services which it is their function to supply. In the exercise of this administration and control of expenditure we must have regard, inter alia, to the elimination of all unproductive costs, among which, as we have seen, are those entailed by labour losees through arcidents.

The elimination of the unproductive costs of accidents can only be effected by the prevention of accidents, and if it were asked What number of accidents may be regarded as the irreducible minimum the answer would be " none." This no doubt is idealistic, but it is not impossible, and it must be the aim if any considerable reduction in the number of accidents is to be secured.

If we would avoid accidents we shall do so most surely be a study of their calusation and by the adoption of those means of prevention which are indicated by such a study.

The incritability of accidents seems a be wo readile taken for granted-hence perhaps the reluctance to ascribe contributors negligence, which is admitted in only wo per cent. of the cases reported in the Nonth Western Districh. This may be the outcome of failure to appreciate the precise nature of an accident and a wo easy assumption that any and exery occurrence by which the person is injured is reritably unavoidable and could not be prevented. An accident acording to the New English Dictionary is, " Inything that happens without foresigh or expectation ; an unusual event which proceeds from some unkown cause or is an unusual effect of a known cause." Acoorling to Webster's Dictionary an accident is literally, " A befalling; an event that takes place without one's foresight or expectation; an undesigned, sudden and unexpected erent." In the legal sense an acrident is, "An erent happening without the concurrence of the will of the person by whose agency it was caused; an accident differs from a mistake in that a mistake alwats supposes the operation of the will of the agent in producing the event, although that will may be caused by erroneous impressions on the mind." Specifically,
in equity practice, an acrident " is an event which is not the result of personal negligence or misconduc." On the inevitability of of arcidents Dr. I'. Sargant Florence, an authority on the subject, of the Deparment of Economics in C'ambridge Cnisersity, in his "Economics of Fangue and ఏnres," " writes, " Accidents are often enough accepted as a dispensation of Providence. This may be true of carthquakes, volcanic eruptions, storms and tempests, but in the humanly created conditions of industry accidents must take their place beside turnover, lost time and deficient and defective output as a symptom of human inefficiency," and again, "The word accident, by its very derivation, denotes something which should not happen at all . . . and all industrial accidents arising out of and in the course of employment might be considered as avodable by the employer." And this is the testimony of the British I Eealth of Munition Workers' Commithee in a published memorandum of the results of an inquiry made by them: " Acridents depend in the main on carelessness and lack of attention of the workers, and so the more one can eliminate this lack of attention and increase the concentration of the worker upon his work the more will accidents be reduced." Those who know most of the facts and are therefore best qualified to judge agree that the number of industrial accidents might be greatly reduced. The Chief Inspector of Factories and Workshops sats \(75 \%\) of the accidents that occur could, with reasonable precatution, be avoided. In the face of this well-informed evidence an accident in the course of employment cannot be regarded as ineritable if it might have been prevented by the exercise of foresight and precatuion, the application of proper methods, and the skilful use of the most suitable tools and appliances. Failure in any of these respects indicates personal negligence or misconduct, or, as Webster expresses it, the concurrence of the will of the person by whose agencs the accident is caused, and these considerations should engage the attention of those whose business it is 10 decide the question of contributory negligence. It may be that contributory negligence is seldom admitted because of sympathy with the rictim and a desire to give him the benefit of the doubt ; if this be so, is not the kindness misplaced and would not it be more beneficial to explore the cause of the mishap so as to establish definitely whener it was really unawoidable, and, if not unawoidable, 10 apply those remedial measures or to take such disciplinary action as would, so far as is humanly possible, have the effect of preventing a similar occurences? It is somewhat remarkable that while bad and imperfect workmanship, such as faully plumbing and dry joints, is frequently punished, the unworkmanlike behaviour by which accidents are often caused generally goes unchallenged. As Dr. Sargant Florence savs:
"()fficial investigations of con confine their interpretation of catuse to the type of machine or object inflicting the injury without incpuiry into the action of the object and of the haman victim immediately preceding. Variations in accidents as a measure of the injured worker's bodity and mental state and the influence upon him of industrial conditions are being gradually recognised, c.g., an accident due to the glancing or slipping of a tool represents a case in which the injured man's state of mind or body may have considerable influence, but an accident due saly to the breaking of a tool is a case where the human factor in the person of the user of the tool could have little or nothing to do with the circumstances." Mr. Henry Ford, of motor car fame, in "My Life and W'ork," writes of the practice of his own establishment: " Every accident, no matter how trivial, is traced back by a skilled man employed solely for that purpose, and a study is made . . . to make that same accident in the future impossible."
"If a man has worked too hard or through too long hours he gets into a mental state that invites accidents. Part of the work of preventing accidents is to avoid this mental state, part is to prevent carelessness, and part is 10 make machinery absolutely fool-proof.'

According to Mr. Ford, the principal catuse of accidents as they are grouped by the experts are:-
(1) Defective structures.
(2) Defective machines.
(3) Insufficient room.
(4) Absence of safeguards.
(5) Unclean conditions.
(6) Bad light.
(7) Bad air.
(8) Linsuitable clothing.
(9) Carelessness.
(io) Ignorance.
(it) Mental condition.
(12) Lack of co-operation.

And he further remarks: "The question of clefective structures, defective machinery, insufficient room, unclean conditions, bad light, bad air, the wrong mental condition and the lack of cooperation are easily disposed of. None of the men works too hard. The wages settle nine-tenthis of the mental problems, and constrution gets rid of the others. We have then to gruard against unsuitable clothing, carelessness and ignorance and to make everyhing we have fool-proof. . . . Industry needs not exact a human toll."

It has earlier been suggested that any effort to reduce the frequency of accidents is more likely to be successful if it be

\section*{ACCIDENTS ON DUTY.}
informed by a stud of accident calusation. To this end and in the hope that the results will prove to be useful the accident records of the North Western District have been explored and a number of analyses made, of which particulars will now be given.

The number of accidents on duty during a recent year was 186- rather more than one every two working days. The arerage number of workmen employed wats 1,200 and the percentage of accidents was therefore: 15.5 . The number of datis lost was 1,950 , or the equivalent of the continuous absence of 6.3 men. The arerage absence for all accidents was \(10!\) dals, but as go of the accidents involved no absence the average absence for the go which did involve absence was 21.6 days. The arerage absence per employe was 1.6 days.

It is difficult to make any useful comparison between the frequency and severity of accidents sustained by the Department's workmen and of accidents sustained by workmen generally as, the Department's work being peculiar to itself, the available statistics of casualties in other industries are not strictly applicable. The case of workers in the dockyards and other establishments of the Admiralty provides perhaps the nearest parallel. There the frequency rate was \(3^{0.5}\), as against this Department's 31.7 , and the severity rate .38 as against .68 . (The frequency rate is the number of lost-time accidents per million hours worked and the severity rate the number of (days lost per thousand hours worked). It will be observed that while the frequency rates are remarkably dose, this Department's severity rate, indicating the time lost, is nearly double that of the Admiralty worker.

The frequency of all temporarily disabling accidents in industry generally is given as about 110 per thousand employed. Of these 110 accidents, about +5 accidents a year will probably disable from a day to a week, 48 from a week 10 a month, and 17 from a month to six months. The general freguency rate of 110 per thousand comes remarkably close to this Department's frequency rate of 109 . There is, however, some difference in duration, the Department's figures showing more day to a week absences and less week to a month absences than is the general experience.

The distribution of accidents during the period under review 1 hroughout the several Sections of the District was Mid. Lancs. (Internal) Section, \(9.1 \%\) of the number of workmen employed; Lancaster Section, \(16.2 \%\) and Preston and Rowhdale Sections, respectivels, \(18 \%\). The risk of accident on external work is therefore shown to be approximately double the risk on internal work and the dangers of external work to be greater in congested urban areas than in rural districas.

In attempt was made to ascertain whether, and, if so, to what extent, the incidence of accidents is affected from month to month
by seasonal differences of temperature or visibility, but, as the following particulars show, no definite condusion was reached. In November, December, January there were 52 accialents, and in June, July, August +1 , an increase of 11 during the winter months, but as against this the number was as high as 19 in May, a good weather month, and as low as 10 in February, a bad weather month. The highest peakis were 24 in March and 19 in May, October and January, respectively, the lowest, 7 in Iprit. This is the greneral experience, for according to the Annual Report of the Chief Inspector of Factories for \(192+\) industrial accidents are alwass heaviest in the monthes of March and (October.

I test was made of the incidence of atcidents on the seteral days of the week, to ascertain whether the freshoness of Monday or increasing fatigue as the weck adrances has an! marked effect on the risk. In 200 cases examined, \(t 7\) accidents happened on Tuestalys, \(\mathrm{t}_{2}\) on Pridays, \(\mathrm{t}_{1}\) on Mondays, 27 on Thursdays, 25 on Wednesdays and is on Saturdays. The general experience is that most accidents happen on Mondats and Fridars: with us Tuesdays and Fridays are the worst days.

The number of accidents during each hour of the day was investigated to ascertain to what extent liabiht to acrident may be affected by fatigue or hunger. Of 20 (ases it is significant that the highest figures were 39 accidents in the fourth hour of the day and 29 in the eghth hour. From this it would appear that fatigue and honger do increase the risk of accident, and this is confirmed be the fact that fewest accidents happened during the first and sisth working hours, the figures being 11 and 10 , respectively.

The ratio of age to risk of accident was examined and it was found that youth is more liable to accident han age, which, on the assumption that gouth is generally less catutous and rertainly less experienced than age, tends to contirm the suggestion that accidents are largely due to negligence or ignorance. Workmen under 20 years of age, although only 5 \% of the stalf, had \(+5 \%\) of the accidents; from 2060,30 years, \(3 t^{\prime \prime}\), of the staff, had \(+1 \%\) of the accidents; \(3^{0}\) to 40 years, \(35 \%\) of the staff, had \(20.5 \%\) of the accidents; fo to \(5^{\circ}\) years, \(10 \%\) of the stalf, had 17 of of the accidents; 506060 vears, \(10 \%\) of the saff, had \(8 \%\) of the accidents: and wer 60 vears of age, 7 of the staff, had no atcidents. It will be noticed that the highest ratios are those in the groups under 20 years and from 20 10 30 years of ase

It is not surprising to find that the hands suffer the majority of the accidental injuries- 85 of 180 , or \(+5 \%\). The head follows, a long way behind, with 19 injuries, and the legs come next with is. The eyes, with 17 injuries, fare better than migh be expected of a member so vulnerable. Of the remaining members the back
suffers in 10 cases, the feet in 12 , the arms in 10 , the knees in 7 and the chest in only 2.

In the year under review there were 9 accidents in connexion "ith motor vehicles and during a subsequent period of 9 months the number was only 5 . This is a gratifying reduction in this type of accident, having regard to the increasing congestion and dangers of the roads, and reflects credit on the drivers.

Some people, by their awkardness, clumsiness or foolhardiness, or owing to a physical or mental kink-people who do not possess the accident sense-seem to be specially susceptible to accidents. These are they who incur multiple accidents. An examination of the records was made for cases of successive accidents to the same person, to ascertain whether there were any of these susceptibles among the Deparment's emploves. In a period of is months, is men each sustained 1 wo and one man three accidents, and an instance of three accidents within 10 months to the same man came to notice a fell days ago. This last case is Worthy of recapitulation :-

On the \({ }_{5} \mathrm{~g}^{\mathrm{th}}\) November, 1925 , C. scratched the third finger of his left hand with a piece of bronze wire. The wound was not medically treated until the following day. This was the third accident 10 C. in 10 months. In January he scratched his hand with a wire end and was absent \(t t^{\frac{1}{2}}\) days, suffering from a septic Wound; on that occasion medical attention was not obtained for three days. There was a second accident in April, when \(C\). knocked his hand against a bolt and cut a finger. The most recent injury developed into a septic arm, no doubt rendered septic by the delay in receiving treament, and the medical officer recommended that (. should in future wear gloves. Whether he will be able to work in gloves or whether, having now protected his hands, some other part of his frame will suffer only time can tell.
()n his point the Industrial Fatigue Research Board, in a report on the Incidence of Industrial Accidents, observes that the explanation of this special suspectibility is to be found in the personality of the individual, and that a worker who has had three trivial accidents is a more dangerous person than one who has had a single bad wound.

Safely first methods and devices for the prevention of accidents are now largely emplosed in all welloconducted industrial establishments, and there is abundant evidence of their success in the reduced rates of frequency and severity. The P.(). Engineering Department is not belind general practice in its apprectation of the importance of the subject. I body of literature and instruction on the matter is to be found in the Department's Regulations, in the brochure " Precautions against Accidents," in Rules for

Workmen, and indirectly, as conducing to workmanlike methods and the skilful use of tools and appliances, in the Department's Technical Instructions and the Pamphlets for Workmen. If the slogan : -
"Know these instructions and appl! them even where there is no risk, Report every accident without exception."
prominently printed in red on the covers of "Precatutions against Accidents," were generally observed the effect could not fail to be a great reduction in the number of accidents. And it has been written:-
"Industrial accidents are usually neither wholly humanly circumstanced nor yet wholly mechanically, but arise most commonly from the fact that potentially errant human nature is employed on potentially dangerous operations. Anticipation of the likely errors and dangers has substantially reduced the atcident rate in several industries and plants, and the adoption of this safety policy indicates the possibility and the economy of minimizing accident."

A few lypical accident cases may be of interest, and maty serve (o) point a moral:-
(a) A workman remosed the nut from an arm boht and came down the pole for his dinner. Climbing the pole after dinner he grasped the arm for support, forgetting that he had removed the nut ; the arm came away and the man fell to the ground. In this catse the man appears to have thought more of his dinner than of his safety and the work he had in hand. His neglect to replace the nut on the arm bolt or to remove the arm before coming down resulted in serious injury to himself (and might have calused injury to others) and loss to the Department. He was incapacitated for seven week the Engincer-in-Chief, while agreeing that the failure to make all secure before leaving the work was blameworthe, allowed compensation pay on the ground that it was extremely doubtful whether the man could be held to have been guilty of serious and wilful misconduct within the meaning of the W'orkimen's Compensation Act, 1023.
(b) In this case the workman was assisting of prepare a fo' pole for erection. The pole jumped the boges on which it was resting and thew him to the ground, catusing a very severe comminuted fracture of the right leg. The pole was lying on the pole cart and as the ground was soft the cart wheels were placed on planks. The pole had been armed while on the cart and was being turned over so that steps could be fised on the other side when one of the wheels slipped into the soft clat, causing the cart to sink suddenly on one side and the 8 -waty arms striking the sround levered the pole over the pole cart pins. There is no
regulation against using a pole cart to support a pole while it is being fitted, but as the ground was soft the usual trestle support composed of 1 wo stout arms crossed would have been a better arrangement, and if it had been used the accident would not have happened. As so often occurs in accident cases the Foreman was not on the spot. The victim of this accident was absent for \(4 \frac{1}{2}\) monthis and though the functional condition of his leg has been restored there is a permanent defect in the alignment of the limb.
(c) A jointer and mate were about to open a joint which was very dirty. Just before they left the job for dinner at noon the joint was washed with petrol. On returning to work and before the manhole was entered an acetylene lamp used for lighting was lowered into the manhole, when an explosion took place. The two men were caught in the fames, the jointer being severely burnt on the face and hands and the mate burnt on the face, and both were incapacitated for seven weeks. The manhole was believed to be free from coal or sewer gas. The roof of the manhole was said to provide a pocket for the fumes and apparently the fire was caused by vapour from the petrol applied to the cable for the purpose of cleaning it becoming ignited by the acetylene lamp. The jointer was ill-advised to use a naked light in such a situation.
(d) E.LI. was engaged in July, 192, as a Labourer and on fth March, 1925 , while 1 wisting a pole he slipped and sprained his right knee, which it was only then discovered had previously been weak and limited in movement. He was absent for two months and received compensation pay. This case illustrates the importance of ascertaining before men are engaged whether they are free from phesical defect or infirmity.
(e) A workman got a splinter of wood in one of his fingers. Surgical aid was not sought till the following day when the finger had swollen and become septic, necessitating 2 ! weeks' absence. The man, who is an Ambulance man holding several certificates, washed and attended to the wound after removing the splinter and considered that this was sufficient. The point of this case is that first aid is not intended to preclude the attention of a surgeon. The first rule of ambulance work is "Send for a doctor."
(f) I remarkable case is that of E.R. On the Gth Mar, iq2t, his man, \(3+\) yars of age, was transferring wires from a ladder to a pole when the ladder broke and caught him on the nose. The injury was described be the Medical Officer ats abrasion of the skin of the nose and forehead, and classified as " Slight." The ladder was a borrowed one and was set in an upright position with only (wo stals, and the Sectional Engineer regarded the foreman as to blame for not arranging for the ladder to be sufficiently stayed before the man ascended it. There was no absence. The man
continued to work after the accident and for more than three years afterwards. In fecember, wat, he was away for 3 days suffering from sincope-Gastric and from February 10 Xugust of the following vear, 1925 , he had successive absences of 19,11 and 91 days, in all 121 days, suffering from syncope-Gastric, Debility and Epilepsy. Ilis superannuation was then athorized on a retiring medical certificate describing his ailment as Epilepsy associated with marked gastro-intestinal toxomia. (On the 25 th September E.R. died in hospital. The doctor who made a post-mortem examination deposed at the inquest that there wats no external sign of injury to the skull, but on the inner laver of the skull cap there was a small excavation the size of the end of a lead pencil \({ }_{8}^{17}\) " deep. ()n top) of the forehead a little to the right of the eye there was a small perforation of the brain about the size of the excavation, and the batin, otherwise healthy, was prom ruding slighty into the hole. This condition of the skull and brain seemed to be the result of an odd injury be violence and not disease; there must have been a fracture four vears ago. The cause of death was heart failure following the epileptio state, of which the fracture was possibly the origin. The case was referred to the Chief Medical Officer, who in view of the post-mortem examination considered that it could not be successfully maintained that the accident in ig2 I was not the cause of the brain condition responsible for death, and liability under the Workmen's Compensation Aer was admitted. This case is cited as a striking illustration of the serious conseguences which may follow negled to use suitable tools and to employ proper methods.

The Department's work cannot be classed as a hazardous occupation. During the last seven years only three fatal accidents have happened in the North Western District, and as will have been gathered from the foregoing particulars the risk of injury necessitating absence is as 3 is 10 fo. Vet it should not be forgotten that every accidental injury is a potential fatality and that as Dr. Sargant Florence puts it: "Apart from the general condition of the worker minor accidents such as cuts or scratches do not entail lost time but are get unquestionably responsible for lowered working capacity."

The appeal of this paper has been largely utilitarian--the need in the interests of efficience of reducing the number of accidents on duty, but may it not be urged that the prevention of such accidents has an even greater claim on our attention on the higher Eround of homanity? The moner cosi of an accident on duty is £ 7 or \(£ \mathrm{~s}\), but what it mav cost its victim in physical and mental suffering and worry is incalculable.

\section*{NOTES AND COMMENTS.}

Tine student of telephony is rather apt to devote too much attention to the purely apparatus and exchange development side of the subject, and io ignore the connecting links and take for granted that the line plant lookis after itself. It is true that the intricacies of exchange equipment-espectially when one gets down to the principles of machine swithing and their application to multi-office areas-are extratordinaty fascinating. The problems have been attacked and are being solved be most ingenious methods; hats not someone said that automatic: telephony is the high-water mark of human inventive genius? But that is not the Whole story of telephone development. The modern long-distance trunk line, balanced and loaded, fitted with repeaters, echo suppressors and accurate line balances, is a product of high ensincering skill and is worthy of the closest atlention, bot only of the student but of those whose duties may not have brought them into intimate contad with external work but yet are zealous enough in their profession to try waster all its phases. It is not possible, we admit, for any one commonication engineer to assimilate all the details of all the branches today; the time has some for one man to carre in his head a list of all the screns, tags, terminals and parts of every item of apparatus used be the Departments, as we believe an offieer now rery high in rank was once capable of doing without apparent effort. To attempt such a thing to-day would be foolish: a glance through the Stores Rate Book will disillusion anvone desitous of attempting it. Nevertheless, the field is not so wide as to debar any engineering officer

\section*{NOTES A.ND COMMENTS.}
from acquiring a sufficient keowledge of essentials so that when the time and opportunity come the details can be readily absorbed.

It is for these reasons we weloome the valuable articles on the London-Glasgow Trunk and its repeater stations, by Mr. A. B. Hart, and the description of the precision testing and cable balancing courses by Messrs. Morice and Morris. The cable testing courses form a fitting conclusion to the soleme of education for its staff now carried out be the Department.

\section*{A REFERENCE TELEPHONE TRANSMISSION SYSTEM.}

The telephone administrations of the worid have been concerned for some time on the subject of the adoption of a reference transmission standard, one which would be stable in operation and by which the telephone of commerce could be checked for rolume and for articulation and also to bring results obtained by different administrations stricth into line with each other.

Interesting demonstrations were given at the P.(). Research Station at Dollis Litl in the last week in Maty of apparatus developed by the American Bell System, Siemens and Halske of Berlin, and the British Post Office for use in connection with a standard Reference System. The German and British exhibits, although giving excellent results, had not been developed to the extent of the American system and it was decided, after prolonged discussion, that it would be advisable to adopt in toto the American system for the time being. The main points were that here was a completed system which fulfilled the requirements laid down and one on which a great deal of experience had been obtained regarding the stability of the component parts.

It was recommended that the (.\((\) C.l. should obtain a compleie set of apparatus which would be known as the European Master Transmission Reference Sistem. Administrations could maintain other Reference Systems, which, if approved by the C.C.l. as conforming to rertain limits lad down, would be designated Primary Reference Sistems. The necessity of a concrete Naster System follows from the impossibility, at the present, of obtaining apparatus within sufficiently close limits of difference to ensure that two systems built to the same acousticelecaric-acoustic specification but using difierent types of apparatus would give performances identical with one another.

Secondary and working standards not involving the elaboration of the Primary Sistems could be used and calibrated from them.

Briefly, the Daster Gistem comprises six parts:- \(\\) transmitter and associated amplifier, a non-reactive line of goolo ohms
impedance, a receiver with associated amplifier, two electrical networks (one to produce such frequency-characteristic distortion in the transmitter as to give the reference transmitter the same frequency-characteristic as that of the commercial type working standard, and another to do the same for the receiver), and, lastly, the calibration apparatus.

The transmitter used is the now well-known type of condenser transmitter, with a heavily air-damped stretched diaphragm. It is made up in a size comparable with the No. I C.B. transmitter and mounted upon a standard type pedestal. The line calls for no comment. The receiver is of the permanent magnet Bell type, but having the diaphragm mechanically damped by a series of thin paper discs placed below the diaphragm. The diaphragm is clamped between faced metal surfaces to ensure uniformity and permanence.

It is claimed that the transmitter and receiver maintain their calibration with great accuracy, but in order to obtain this calibration in absolute units a calibration sestem is incorporated. This is in reality the essence of the whole system. Calibration of the transmitter is carried out by enclosing the front of the diaphragm with a small chamber in which is held a thermophone consisting of two strips of gold leaf. If a direct polarising current be passed through this and an alternating current be superposed the heating and cooling of the strips heats the air gas in immediate contact. If the chamber in which the strip is located be small in comparison with the wave-length of sound corresponding to the frequency of the alternating current the pressure in the chamber varies in accordance with this current. Since the length of a sound wave in hydrogen is four times its value in air the calibration is carried out in hydrogen. It is clamed that it is possible to calculate the pressure in the chamber when its constants and those of the thermophone are known. The voltage output of the transmitter can thus be obtained in terms of dynes per square cm . on the diaphragm.

The receiver is calibrated by means of the previously calibrated transmitter. The thermophone is removed and the receiver, by means of a metal coupling device, placed airlight in front of the transmitter diaphragm. On passing a known current through the receiver the output in dynes per square cm. is obtained, knowing the calibration of the transmitter.

When required to test an ordinary receiver or transmitter the frequency characteristic in the standard is distorted so as to simulate that of the test instrument. The timbre of the two being then identical it is possible to compare the amplitudes arcurately.

Messrs. B. S. Cohen, A. J. Aldridge and W. West, of the Research Section, Engineer-in-Chief's Office, read a paper on " The Frequency Characteristics of Telephone Systems and Audio-Frequency Apparatus, and their Measurement" before the Institution of Electrical Engineers at the May meeting. An interesting discussion followed the reading of the paper, in which a number of P.O. engineers took part.

Mr. Donald Murray sends us the following communication :-

\section*{TRANSFER OF AGENCY.}

I announced some time ago that I had sold my Multiplex printing telegraph business to Creed \& Co., Lid., of Croydon, on the zoth June, 1925 .

I have now arranged for the transfer of my agency for the products of the Morkrum-Kleinschmidt Corporation of Chicago, to the Standard Telephones \& Cables, Lid., of Connaught House, Aldwych, W.C.2, on the 3ist March, 1926. After that date all enquiries and orders for Morkrum and Kleinschmidt machines and spare parts should be sent to the Standard Telephones \& Cables, Ltd.

The Standard Company (formerly the Western Electric Company) has had very large experience in telegraph and telephone work and I have confidence that in transferring the agency to them the interests of my customers will be amply safeguarded and first class service assured to them.

My permanent address is:--
BM/DMRY,
London, W.C.i.
BM/DMRY is my Monomark and letters so addressed will alwats be forwarded to me wherever I may happen to be.

Donalid Murray.
3oth March, 1926.

> ROYAL CORPS OF SIGNALS DINNER, I926, AND
> FORMATION OF A ROYAL CORPS OF SIGNALS DINNER CLUB.

The above Dinner will be held in London on Monday, July reth.

Officers (Regular, Territorial and Supplementary Reserve) have already been circularised, but owing to lack of recently authenticated addresses it has not been possible to give information either about the Dinner or the formation of the Dinner Club to more than a very small number of the ex-Officers who served in the Signal Service, Royal Engineers, or who were seconded to the Signal Service during the war.

The Honorary Secretary of the Royal Corps of Signals Dinner Club would be glad if any such ex-Officers would kindly communicate their addresses to him c/o S.D.6. The War Office, S.W.r.

Extract from The Times, dated 29th May, i926: -
"In face of competition from American, German, French, Swedish and Italian concerns, The New Antwerp Telephone \& Electrical Works has secured sole rights for the reorganization and exploitation of the Greek telephone and wireless services. The contract is worth about two and a half millions sterling."

Messrs. W. F. Dennis and Co., zo, Queen Victoria Street, E.C.4, are the sole representatives of the above Company in the British Empire.

> Research Laboratories of the General Electric Company, Ltd., Wembley. \(28 t h\) May, 1926.

The Managing Editor,
Post Office Electrical Engineers' Journal, Engineer-in-Chiet's Office,

Alder House, E.C....
Dear Sir,
In riew of the recent discussion in your columns on the Shunted Condenser, the following may be of interest :

An exact solution of the problem of annulling the inductance of a relay coil would be to insert in series with it some circuit or device having an effective negative inductance equal in magnitude to the positive-inductance of the coil.

A circuit having a negative inductance can be constructed by making use of a negative resistance such as the Dynatron or various other thermionic devices.

Assuming that a negative resistance is available consider the simple circuit shown in the Fig., consisting of a resistance \(r\), a capacity C and a negative resistance \(-r\).

The impedance of this circuit is
\[
\begin{aligned}
\frac{\mathrm{I}}{\mathrm{I}+-\frac{\mathrm{I}}{r}+\frac{\mathrm{I}}{j p \mathrm{C}}} & =\frac{\mathrm{I}}{\mathrm{I}+\frac{j p \mathrm{C}}{1-j p \mathrm{C} r}} \\
& =r-j p \mathrm{Cr}^{2}
\end{aligned}
\]

The circuit is thus equivalent to a resistance \(r\) in series with negative inductance of value \(\mathrm{Cr}^{2}\).

By inserting such a circuit in series with a relay coil and choosing C and \(r\) so that \(\mathrm{C}^{2}=\mathrm{L}\) the inductance is completely annulled and the growh of current instantancous.

Further by inter-changing the positive and negative resistances in the Fig. the effective resistance of the circuit becomes negative so that the resistance of the coil can also be annulled and the device in addition becomes an amplifier.

Of course, in practice it would be possible only to approximate to this solution, but since satisfactory negative resistances such as Dy natron have been produced the method should be capable of practical development.

By replacing the capacity by an inductance a negative capacity can be obtained and other more complicated negative impedances can be obtained in a similar way.

Yours faithfully,
A. C. Bartlett.

\section*{HEADQUARTERS NOTES.}

\author{
EXCHANGE DEVELOPMENTS.
}

The following works have been completed:-
\begin{tabular}{|c|c|c|}
\hline 1:xchange. & Type. & N o. of lines. \\
\hline Morriston & Auto & 320 \\
\hline Ipswich & , & 1560 \\
\hline Swansea Extension & , & 440 \\
\hline Barnsley Extension & Manual & 300 \\
\hline Grangewood Extension ... & " & 1080 \\
\hline Huddersfield Desk & " & - - in \\
\hline Hull Toll Extension & " & 4 new positions \\
\hline Ilford Extension .. & " & 140 \\
\hline Openshaw New ... & " & 1400 \\
\hline Primrose Hill New & " & 4.500 \\
\hline Redditch New & " & 340 \\
\hline Speedwell Extension & " & 2100 \\
\hline Toll M.F. .. & " & 1,30 verticals \\
\hline Uxbridge Extension & " & 220 \\
\hline Auto Strop Razors & I'A.B.X. & 30 \\
\hline Ashton-u-Lyne Infirmary... & ," & 30 \\
\hline Battersea Council ... & ", & 70 \\
\hline Birmingham Corporation... & ', & 30 \\
\hline Bleachers Association & " & 100 \\
\hline Bootle Corporation & " & 50 \\
\hline Bradford Infirmary & " & 40 \\
\hline Burberry's Ltd. ... & " & 6o \\
\hline Clark Hunt ... & ', & 40 \\
\hline Collins, Bristol .. & ', & 20 \\
\hline Eastbourne Corporation & ", & 50 \\
\hline Lambeth Council ... & " & 50 \\
\hline Lancashire C. Council & , & 30 \\
\hline Larkins Ltd. ... & ", & 30 \\
\hline Ledinghams Ltd. ... & " & 30 \\
\hline Manchester \& Salford Cooperative & " & 30 \\
\hline Metal Agencies ... & " & \% \\
\hline Middlesex Hospital & , & 70 \\
\hline New Hudson ... & ", & 20 \\
\hline North West Road Car ... & ', & 30 \\
\hline Owen Owen . & ", & 60 \\
\hline Pearson Dorman ... & ', & 50 \\
\hline Perfecta Tubes ... & " & 30 \\
\hline Robinson Bros. & " & 30 \\
\hline Shell Mex (Oxford) & , & 30 \\
\hline Spillers \& Baker ... & " & 40 \\
\hline Stelp \& Leighton ... & " & 40 \\
\hline Valor \& Co. & " & 30 \\
\hline Wagon Repairs & \(\because\) & 40 \\
\hline Watney Combe Reid & \(\cdots\) & 00 \\
\hline Weston-super-Mare Council & \(\because\) & 30 \\
\hline Yardley \& Co. & " & 30 \\
\hline
\end{tabular}

Orders have been placed for the following new Exchanges:--

HEADQUARTERS NOTES.

Orders have been placed for extensions to existing equipments as follows:-
\begin{tabular}{|c|c|c|c|}
\hline Exchange. & & Type. & No. of Lines \\
\hline Broughty Ferry & \(\ldots\) & Aut) & 200 \\
\hline T)undee & \(\ldots\) & " & 1000 \\
\hline Sketty & \(\ldots\) & " & 170 \\
\hline Birmingham East & \(\cdots\) & Manual & 380 \\
\hline Blackpool ... & ... & " & 1600 \\
\hline Bournemouth & \(\cdots\) & " & 1680 \\
\hline Brixton
Clerkenwell & \(\ldots\) & ", & 1480
560 \\
\hline Grangewood & \(\ldots\) & , & 1080 \\
\hline Harrow & & " & 1530 \\
\hline Ilford & \(\ldots\) & " & 140 \\
\hline Kingston & \(\ldots\) & " & 1680 \\
\hline Leamington & \(\ldots\) & " & 380 \\
\hline Leith & & " & 260 \\
\hline Nelson & & " & 260 \\
\hline North & \(\ldots\) & " & 1300 \\
\hline
\end{tabular}

RETIREAIENT OF ANDREWV FRASER.
Mr. Andrew Fraser, having reached the age of sixty, has retired from the service. A native of Aberdeen, where the stories of meanness come from, he was a characteristic Scot and, acting on the Prime Minister's advice, he remained one to the end. He passed through the stages of Relay Clerk, Second Class Engineer and Assistant Engineer, and for the past two years he was Executive Engincer in the Telegraph Section. For many years he acted for the Deparment as the examiner of telegraphists for the Overseer's Certificate, and gained for himself a high reputation for absolute fairness. In the early days of the Journal Mr. Fraser contributed a very interesting series of articles on electrical pioneers, and several times since then his writings have graced our pages. He retires with the best wishes of all his engineering colleagues, and we are sure also with the kindliest regard of the staffs of every important telegraph office in the kingdom.

\section*{LONDON DISTRICT NOTES.}

Drring the quarter ended March 261h, i926, the number of exchange lines, internal extensions and external extensions provided and recovered, were as follows :-
\begin{tabular}{|c|c|c|c|}
\hline Provided & \[
\begin{gathered}
\text { Exchange } \\
\text { lines. } \\
\text { I I,029 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Internal } \\
\text { Extensions. } \\
6,982
\end{gathered}
\] & \[
\begin{gathered}
\text { External } \\
\text { Extension } \\
1,398
\end{gathered}
\] \\
\hline Recovered & 3,162 & 3,213 & 636 \\
\hline Net & 7,867 & 3,769 & 762 \\
\hline
\end{tabular}

\section*{LONDON DISTRICT NOTES.}

\section*{External Construction.}

\section*{Mileage Statistics.}

During the three months ended 3 ist March, 1926, the following changes have occurred:-

Telegraphs.-Nett decrease in open wire of 37 miles and a nett increase in underground of 410 miles.

Telephones (Exchange).-Nett decrease in open wire (including aerial cable) of 416 miles and a nett increase in underground of 38,369 miles.

Telephones (Trunk).-Nett decrease in open wire of io miles and a nett increase in underground of \(\mathrm{t}, 090\) miles.

Pole Line.-Nett increase of 90 miles, bringing the total to date to 5,362 miles.

Pipe Line.-Nett increase of 160 miles, the total to date being 6,545 miles.

The total single wire mileages at the end of the period under review were:-
\begin{tabular}{cccccr}
Telegraphs & \(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) & 24,766 \\
Telephones (Exchanges) & \(\ldots\) & \(\ldots\) & 1,7 I 3,362 \\
Telephones (Trunks) & \(\ldots\) & \(\ldots\) & \(\ldots\) & 60,998 \\
Spares \(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) & 56,372
\end{tabular}

\section*{Internal Construction.}

New Exchanges.-A new C.B. ıoA Exchange was opened at Waterloo on April igth. The equipment was installed by the Department's staff in a building adjoining the Hop Exchange, which will be afforded much needed relief.

A new C.B.ı Exchange was opened at Primrose Hill on May \(3^{3}\) th. The equipment was installed by Messrs. Ericsson's Manufacturing Company, and will accommodate 4,500 lines.

A C.B.io Exchange, known as " Kelvin," was brought into use on May 1gth. The Exchange, which was installed by the Department's staff, is located in the building erected for the accommodation of the Western Automatic Exchange.

Two new C.B.I Exchanges are in course of construction by the General Electric Company at Rodney (Walworth), and Battersea. The Exchanges will accommodate 3,700 and 5,490 subscribers respectively.

The S.M.T. Trial Equipment at City Exchange has been completed by the A.T.M. Company, and is in course of being tested out.

Progress is being made with the construction of the Holborn Mechanical Tandem, Holhorn Automatic, and Bishopsgate Automatic Exchanges.

Closing of Bank Exchange.-The Bank Exchange was closed on June \(5^{\text {th }}\), the subscribers being transferred to the Exchanges serving the areas in which the subscribers' premises are located.

\section*{Telegraphs.}

The Jersey circuit has been fitted with modern Creed apparatus and similar apparatus has been installed in connection with the Norwegian circuits which are now to be worked from the Central Telegraph Office instead of by a Cable Company.

There are now four types of Creed in use: (i) Pneumatic, with air pressure in common; (2) Pneumatic self-pumping; (3) Wholly electric, and (4) Electric modified.

Apparatus of the Wheatstone and Creed types has been installed in appreciable quantity in connection with the Wireless Beam Stations, and the accommodation for Wireless work is being taken up rapidly.

Teletypes are still increasing and two patterns--1ypewheel and typebar--are now in use. These instruments are being used for Private Wires as well as Public Telegraphs.

\section*{MR. JAMES IIAY THOWV.}

The death of Mr. J. H. Thow, Assistant Superintending Engineer, London District, has to be recorded with great regret. His numerous friends in the Engineering Department were shocked to receive, on the morning of April \(22 n d\), the news that he had passed away suddenly and unexpectedly after a short illness. Mr. Thow, who was in his 59th year, was on duty, apparently in the best of health, up to Easter, when he met with a slight accident, but this was not thought to be serious. He was seen by some of his colleagues very shortly before his death, and then seemed to be in good spirits and making rapid steps towards recovery.

Mr. Thow entered the Department's service as a Telegraphist at Glasgow in October, 1884, and was transferred in March, 1892 , to the Engineering Branch, in which Department he passed through the grades of Junior Clerk, Second Class Clerk and First Class Clerk prior to sog, when he became a Second Class Engineer. In \(1 g 02\) he came to London as a First Class Engineer in the (then) South Metropolitan District, and took charge of the Ealing Exchange Area when the Ealing Exchange was opened in 1904. After some years in charge of the Western Exchange Section he was engaged for a short time in the Technical Section of the Superintending Engineer's Office, and was then transferred to the C.T.O. Section. In this Section he took a very active interest in the Dudley pneumatic tube (continuous suction low
vacuunij system. He made many attempts to solve some of the dificulties inherent in the street tube system in London, but his experiments came to a close on his promotion to Assistant Superintending Engineer in the Suuth Midland District, with headquarters at Reading.

During the War, Mr. Thow took special charge of the installation and maintenance of works in connection with Air Defence in the South Midland District. After the \(W\) ar, extensive underground works, including the South Midland District portion of the London-Bristol, London-Southampton, and a number of the London Toll cables, were mainly under his control.

In 1922 he was transferred to the London Engineering District where he dealt more particularly with telegraph matters, buildings and the technical training of the minor staff.

His interests and hobbies were many. At Ealing he was well known in local circles and for many years was a member of the choir of the Parish Church. On his return to London from Reading he lived at Tulse Hill and became a member of the Church Choir there. In all, his services as a chorister extended to fifty years.

Mr. Thow was a very capable amateur mechanic and was skilled in the use of tools. He was also expert in cabinet making and wood working, and his work would be creditable 10 a professional craftsman.

Our late colleague possessed an exceptionally bright and cheerful personality, and was popular with all grades of the staff. He llas a devoted husband and father, and those who knew him intimately mourn the loss of a sincere friend. An indication of the love and respect of those with whom he came in contad is contained in the fact that upwards of two hundred letters of condolence were received by his family.
R.A.W.

\section*{THE INSTITUTION OF POST OFFICE ELECTRICAL ENGINEERS.}

\section*{ELECTION OF COINCHL FOR THE YEAR 1926-27.}

The constitution of the new Council will be as follows:-Chairman-Mr. A. L. DeLattre. IIonorary Treasurer-Mr. I3. O. Anson. Representing Staff of the Engineer-in-Chief's Office-

Mr. C. J. Mercer, and Mr. E. J. Wilby. Executive Engineers-

London: Mr. A. Wright.
Provinces: Mr. W. J. Rolfe.

LOCAL CENTRE NOTES.
Representing Assistant and Second Class Engineers-
London: Mr. J. MI. Bell.
Provinces: Mr. C. E. Morgan.
Chief Inspectors-
London: Mr. W. A. B. Romain.
Provinces: Mr. A. S. Carr.
Clerical Staff-
London: Mr. E. T. Larner.
Provinces: Mr. A. W. Lines, and Mr. H. Longley.
,, Inspectors-
London: Mr. C. W. Messenger.
Provinces: Mr. R. P. Collins.
Draughtsmen-
London and Provinces: Mr. J. Millet.
Secretary-Mr. R. V. Hansford.

\section*{LOCAL CENTRE NOTES.}

LONDON CENTRE.
Session rg25-26.
It is satisfactory to record that increasing interest in the activities of the Institution has been shown. Six Ordinary Meetings, the Annual General Meeting, and five Informal Meetings were held.

The programme for the Ordinary and Annual General Meetings was as follows:-

13th October, 1925, a Lecture by Major A. G. Lee, M.C., B.Sc., M.I.E.E., on "The work of the Wireless Experimental Section."

24th November, 1925, a paper by Harvey Smith on "The Problem of Flexibility in Subscribers' Cable Distribution."

Sth December, 1925 , a paper by Capt. H. Hill, B.Sc., M.l.E.E., on " The Engineering Aspect of Telephone Exchange Accommodation."

12th January, 1926, a paper by W. Layton on "Precision Testing in the London Engineering District."

9th February, 1926, fwo papers by Capt. N. F. Cave-BrownCare, B.Sc., M.I.E.E., on (a) "Testing of Secondary Cells," and (b) " Torch Blowing Lamps."

9th March, i926, a paper by Messrs. E. S. Ritter, D.F.H., A.M.I.E.E., and G. P. Milton on the "Testing of Telephone Circuits and Apparatus with Alternating Currents."
ist June, 1926 (Annual General Meeting), a paper by Messrs.
G. F. O'dell, B.Sc., A.K.C., M.I.E.E., and W'. W. Gibson on " Automatic Trunking in Theory and Practice."

Wost of the papers have been recommended for printing, but some time must elapse before the printed copies are available. For the convenience of members a lypewritten copy of each paper has been deposited with the Librarian.

The subjects for the Informal Meetings were as follows :-
October 27th, 1925. Notes on "American Telephone In-dustry-an Outline of its Development, Organisation and Control," prepared by Mr. W. I.ay, M.I.E.E. [These notes have been printed in the May, 1926, issue of the Telegraph and Telephone Journal.]

December 15th, 1925. Notes on "Pipe Laying by Magnall Irving Thrust Boring Apparatus in London," prepared by Mr. Arthur Miller.

January 19th, 1926, was reserved for the continued discussion on Mr. Harvey Smith's paper on "The Problem of Flexibility in Subscribers' Cable Distribution."

January 26th, 1926. Notes on "Transmission Values of Circuits in the London Area," prepared by Mr. J. S. Elston.

February 23rd, 1926. Notes on "Minor Staff—Recruitment, Training and Advancement," prepared by Mr. W. A. Williams. [A copy of these notes has been deposited with the Librarian.]

Visits: Arrangements were made for a visit to the Sterling Telephone and Electric Co., Ltd., Works at Dagenham, Essex, and to the Standard Telephones and Cables, Limited, Works at New Southgate. The development of Automatic Telephones and Wireless Broadcasting made these visits particularly interesting and it was unfortunate that so many of the members who had notified their intention of visiting either or both of these works were prevented by the exigences of their official work. The Committee would like to take the opportunity of thanking the Managing I)irectors and their staffs for the excellent programmes arranged for the visitors.

The members of Committee for the 1926-27 Session are as follows:-
Chairman-Major A. G. Lee, M.C., B.Sc., M.I.E.E.
Vice-Chairman-Mr. J. W. Atkinson, M.I.E.E.
Representing Staff Engineers at HeadquartersMr. P. T. Wood.
," Executive Engineers-
Mr. F. Blick, M.M.I.E.E., and Mr. J. Cowie,
M.I.E.E.
", Assistant Engineers-
Mr. W. W. B. Crompton, A.M.I.E.E., and
Mr. W. Dolton, M.I.E.E.

Representing Chief Inspectors-
Mr. J. Hargreaves, (vacancy).
Inspectors-
Mr. D. C. Maddocks, and Mr. A. Miller.
,, Draughtsmen-

Mr. H. Taylor.
Clerical Staff, London Engineering District-
Mr. E. T. Larner, A.I.E.E.
Engineering Staff, South Eastern Districh-
Mr. MV. J. Jenkins.
,, C`erical Sitaff, South Eastern District-
Mr. P. J. Dolgson.
Local Secretary Mr. M. W. Fridav.
On the tath Mas, Messrs. (i. Fi. O'dell and MV. M. (iibson read a paper on " itumathic Trunking in Theory and Practice." The following is a syonsis of the paper:-Introduction. Divergence between theory and practice. Difference between mantai and automatic exchange traflic. L'se of the theory of peobabilitites -its value and the conditions necessary for making best use of it. Traffic carried by each switch in a simple sroup calculated and measured. Method of estimating theoretically the traffic carried by a grading, comparison of this method with results of practical tests. Method of taking records in aummatio exhanges.
(1) Measurement of congestion or last contact traffic.
(2) ,, of lost calls or overflows.
(3) .. of total calls.
(4) .. of traffic carried by a group of switches.
(5) Recording instruments.

I most interesting discussion followed.
R.T.R.

\section*{}

For our March fixture the lecturer for the day was Captain Hill, B.Cr., M.I.E.E., of the Engineer-in-(hief's Staff, the sub)jea being "The Engineering Aspect of Telephone Exchange !ccommodation." The attendance was unusually large, being augmented by vistors from the staffs of the District Managers and from the Postmaster's stalf. It is understond that the paper is being read before oher Centres, and consernentle it is unnecessary here to ! of into any details of the subject, berond stating that the paper proved of great interest to the andience-an interest much enhanced by the stye of deliver!. The demand for copies of the paper could not be met.

The las: item on the programme for Session 1925-26 was reached on igth \(\lambda_{\text {pril, when three films were shown- }-100}\)
(1) Aiding the Art of English Conversation.
(2) Creating the Instruments of Speech.
(3) The Audion.

The first two films illustrated operations in the manufacture, handling and laying of cables; also various stages in the production of telephone equipment and Wireless Apparatus. The third film, "The Audion," illustrated in detail the ation taking place inside the Themionic Valie. There was a large turn-out of members, and of visitors representing kindred institutions. The films were very much appreciated, and the thanks of the local centre are due to the lenders of the films, namely, Standard Telephone and Cables, Limited (formerly IV estern Eelectric Company, Ltd.).

Many members of the Engineering Beparment who were at one time associated with the Glasgow Telegraph Instrument Room of who have in the past been attached to the Scotland Weest District will regret to learn of the passing of their old acquaintance, John Paxton, whose death took place on the Sth of April. Mr. Paston had been in failing health for some considerable time, but the end, when it came, was very unexpected.

Mr. Paxton joined the Engineering Department towards the end of 1902 and was appointed to Dligher Clerical rank in 1920. Ilis death has caused keen regret among his colleagues of all ranks in the District with which he was connected for a period of over 24 years.

\section*{NORTH NVILES CENTRE.}

The fourth meeting of the Session was held at the Shrewsbury Technical School on the 13 th January, 1920, when Mr. A. E. Stollard read a paper on "The Relay System of Automatic Switching—Private Branch Exchanges." Mr. Stollard traced the progress of telephonic communication from the original invention by Dr. Graham Bell and exhibited a series of slides showing early types of switchboards and procecded from this to a description of the components of the relay automatic system and of the design and characteristics of the relay. The paper concluded with a description of the Fleetwood Relay Automatic Exchange.

At the fifth meeting which was held on the ist February, i926, Captain H. Hill, of the Engineer-in-Chief's Othce, read his paper on "The Engineering aspect of Telephone Exhange Accommodation." The paper has already been referred to in these columns and it was followed by a rery full discussion and a hearty vote of thanks to Captain Hill.

The sixth and final meeting of the Session was held on

Wednesday, the roth of March, when Messrs. R. S. Dacombe and J. T. B. Donnellan read a paper entitled " Plant Records, Their Preparation and Use." The paper was illustrated by slides and diagrams and contained a very full and interesting description of the plant records of various kinds which are maintained under the official instructions. Slides illustrating the official route maps, vandyked plans, cable records, mileage plans, pole diagrams, etc., etc., were exhibited and their usefulness explained. In the discussion which followed many complimentary references were made to the manner in which the drawing office work at Birmingham is carried out and to the assistance which the very complete plant records afford the officers engaged on development and rearrangement schemes.

The Session which has just ended has been a very successful one as regards attendance and interest in the papers. The former has varied from between 70 to 80 and the discussions have not infrequently had to be hastily concluded to allow members to catch their trains homeward.

\section*{Robert Gariner Masaroon.}

Robert Gardner Masaroon, who is well known throughout the Post Office Engineering Department, retired from the position of Assistant Superintending Engineer of the North Wales District on the 26 h January last after 44 years' service to the State in various capacities.

After serving for two years at sea, during which he made the famous trip round (ape IJorn to California and back in an old wind-jammer, he entered the Post Office service as a telegraphist at Londondery in 1882. A year later he joined the Telegraph Batalion of the Royal Engineers, subsequently serving in the Egyptian campaign of 1885 . He was invalided home 10 England and continued his miliary service in the old Southern Engineering District.

Mr. Masaroon's repuation as an efficient administrator was such that during the South African war, when all the Royal Engineer officers were withdrawn for active service, he was placed in charge of the South-West portion of the Southern District as Acting Superintending Engineer. The manner in which he carried out this duty elicited the special thanks of the Engineer-in-Chief.

In rgot, on the completion of his military service, Mr. Masaroon was appointed ist Class Engineer in the Post Office Engineering Department, in which capacity he served at Bristol until rgog, when he was promoled, after a competitive examination, to the position of Assistant Superintending Engincer. After a short period of service in Ireland he came to the North Wales

\section*{I.OCAL CENTRE NOTES.}

District, where he remained until his retirement in January last. This, very briefly, is the record of Mr. Masaroon's meritorious career.

It is no mere platitude to say that Mr. Masaroon's retirement leaves a distinct gap in the North Wales District; and it is also regarded as a personal loss not only by his engineering colleagues, but also by his many friends in other Departments with whom he came into official contact. His long and varied experience had filled his mind with precedents, which enabled him to suggest

R. (i. Nasaroons
ways and means of removing difficulties and getting things done, and his chief characteristic in his official duties was his readiness to place his experience at the service of his subordinates of all ranks.

Those of his more intmate colleagues have a very warm regard for him for his personal qualities, and they cherish the hope that there may be many opportunities of meeting him at Weston-superMare, his chosen place of retreat, where he will have more leisure
to devote to his well-stocked library, which he has gathered together through a long course of years.

It has been sad that any man who has led an active life has at least one good book in his head if he would only write it, and the saying should certainly be true of Mr. Masaroon, but instead of writing a book he prefers to tell his experiences to his friends orally, and it is his delightful table-talk which has always made him the best of good company. Both officially and personally he leaves many pleasant memories behind him.

At a recent Staff gathering a presentation of a barometer and 3 -valve wireless set was made to him, and representatives of all grades of the staff expressed their hearty good wishes to him and Mrs. Masaroon for a happy retirement.

We deeply regret to record the death of Mr. A. E. Giffen, Executive Engineer, Hanley, which took place on the 3rd of February. Mr. Giffen, who had been ill for some months previously, was 55 years old. He entered the service as a Sorting Clerk and Telegraphist at Glasgow in 1886 and was, later, transferred to the Engineering Department as a junior clerk. He became, successively, Sub-Engineer, Engineer 2nd Class, Engineer ist Class, and Exccutive Engineer, his various Districts being North Wales, Ireland, Midland, Metropolitan Central, South Midland, and finally again, North Wales, where he was Sectional Engincer at Stafford and Hanley for over 17 years. In him the Department had a rery efficient and zealous officer who combined very highly developed powers of organization and control with unfailing courtesy and consideration towards his subordinates. Ilis personal qualities were appreciated not only by his colleagues but by his fellow citizens in the Potteries area, where he took a full part in the local Engineering associations and in the local and national organizations connected with the church to which he belonged.
G.R.

\section*{NORTIIERN CENTRE.}

On the \(\begin{aligned} & \text { gth March Capt. H. Hill, B.Sc., M.I.E.E., of the }\end{aligned}\) Engineer-in-Chief's Office, delivered a very instructive and informative lecture on "The Engineering Aspect of Telephone Exchange Accommodation," before a well attended meeting. The paper was very well received and the discussion, which had to be curtailed owing to time considerations, was replied to in a very able manner. A vote of thanks to Capt. Hill was carried with hearty acclamation.

The members of the Centre were invited by The Junior Institu-
tion of Engineers to a show of films on the igth March，illustrating the manufacture of Morris Cars and Dunlop Tyres．

Mr．J．H．Bell，A．M．l．E．E．，of the London Engineering Disurict，made a welcome return visit to Newcastle on the 7 th April，when he gave a blackboard Automatic lecture，his subject being the＂Final Selector for P．B．X．Groups．＂Mr．Bell is an experienced lecturer and employs a unique method of illustrating his subject by building up diagrams step by step in a simple and absorbing manner on the blackboard．

The meeting was very enjoyable and instructive，and the members voiced their thanks to the lecturer adequately．

The Committee for nex Session has been selected as follows：－－ Chairman－J．R．M．Elliott． Vice－Chairman－İ．G．C．Baldwin． Representing Exccutive Engineers－G．A．Peck． ，，Clerical Staff－J．A．Motser． ，，Assistant Engineers－C．P．Kay． ，，Chief Inspectors－W．Weightman． ．，I raughtimen－s．J．Millett． ，，Inspectors－－A．II．W＇ade． Local Librarian－－J．Stark． ，，Sectetary－A．C．Smith．

\section*{NORTH WESTERN CENTRE．}

The closing meeting of the 1925－26 Session was held in the Lecture Hall of the Preston Scientific Society，Fishergate， Preston，on the 2gth March，1926，when a paper entitled＂Amateur Wireless Stations＂＂was read by Mr．II．Iforrocks．J．M． Shackleton，Esq．，M．I．E．E．，the newly appointed superintending Engineer of the North Western District，presided and was accorded an ovation upon taking the C⿳亠口冋air．Mr．Horrocks，in the course of an interesting paper deal chiefly with the conditions which would likely be found by an officer called upon to make an inspection of an Amateur Wireless Station and touched upon the following points：－Permits，ierials，Wavemeters（Buzzer and Heterodyne），Transmitting（ircuits，Receiving Circuits，etc．，and related some actual experiences which he had had in his capacity as inspecting officer．The paper was illustrated by an excellent set of lantern slides．

The 1925－26 Session has been most successful．Six meetings have been held，and a risit has also been paid to the new super power station of the Preston Corporation．There has been a nett increase of 1 i in the membership during the year，there have been no resignations and the total of membership of the Centre now stands at ror．There has been a marked increase in the average
attendance at the meetings and a point worthy of mention is the helpful discussions which have taken place.

Local Organization, Session 1926-27:-
Chairman-J. M. Shackleton, Esq.
Vice-Chairman-J. Sinclair Terras, Esq.
Committee-Messrs. W. J. Rolfe, W. Beattie, C. Coward, R. B. Austin, E. Hopper, and H. S. Turner.

Local Librarian-Mr. H. Howarth.
,, Secretary-Mr. D. Barratt.

\section*{SOUTH LANCS. CENTRE.}

It is with extreme regret that we have to record the death of Mr. J. Cardoc Jones, Assistant Engineer, Manchester, in his 57th year.

All who knew him during his varied career will regret the passing of a highly respected colleague and a well informed and zealous servant of the Department.

\section*{SOUTH WALES CENTRE.}

Annual Report.
As no District Notes have appeared in the Journal for a long time, I shall be obliged if you will have the following published :-

The local committee for the 1926-7 Session has been elected as follows:-

Executive Engineers-Mr. W. Scott.
Assistant Engineers—Mr. W. H. Lane.
Chief Inspectors—Mr. II. W. Gifford.
Inspectors-Mr. S. H. Pendleton.
Clerical-Mr. A. G. Packer.
Draughtsmen-Mr. E. W. Thomas.
Local Secretary-Mr. F. J. B. Clarke.
The position of Local Socretary, very ably filled by Mr. E. C. J. Badger, has been relinguished by him owing io his retirement from the Department's service next August.

Six mectings were held during the Session \(1925-6\) and the following papers were read:-
" Notes on Cable Balancing." Mr. J. F. Stewart, Haverfordwest.
"The Engineering Aspect of Telephone Exchange." Capt H. IIill, E.-in-C.'s Office.
" The Training of an Enģineering Inspector." Mr. II. W. Gifford, Cardiff.
"Some points on Trunking in Automatic Exchanges." Mr. G. F. O'dell, E.-in-C.'s Office.
"Inspection of Amateur MVireless Stations." Mr. H. B. Somerville, E.-in-C.'s Office.
" Newpori Repeater Station." Mr. S. H. Pendleton, Newport.

After the reading of the last paper a visit was made to the Repeater Station, which was greatly appreciated by the members.
a. Hoare.

\section*{SOCTH MIDLAND CENTRE.}

The \(57{ }^{1 h}\) meeting on 31 ist March, 1926, was the first of the Centre held in the College after its elevation to the dignity of a University. The attendance numbered 63 .

The proposal of Mr. Halton that the Vice-Chancellor be congratulated in the name of the Centre on the grant of a charter conferring [niversity status was endorsed by all the members present and the Secretary was instructed accordingly.

Mr. H. C. McCormack then commenced his paper:-
" Organisation of a Superintending Engineer's Office."
This was arranged under seren headings-historical note, accommodation, arrangement of work, staff provision, training, annual leave and inspections. The ideals which should be sought when providing or selecting accommodation for a District Headquarters were set out and the fittings required for use in the various rooms were described.

Under "arrangement of work" the standard division of the functions between the groups was examined, minor differences existing in the South Midland District explained and a method was outlined which would reduce the time occupied in dealing with registered papers.

Mr. McCormack identified himself with the benevolent policy of the encouraging angels when criticism of imperfect work was justified.

Substantial economies which have followed the clerical reorganisation of 1922 were described and the opinion advanced that an Accountant or Principal Clerk should be appointed in each District and a second Assistant Superintending Engineer in the larger Districts.

In discussing the training of the clerical force, generalisation as opposed to specialisation was favoured and plans for the rocational education of the District Headquarters' staff were disclosed.

The paper roncluded with details of the inspecting duties handed down in recent years to lower ranks by Superintending Engineers and their assistants.

The discussion which followed did not lack animation and although the unprecedented number of nine spoke, several sheaves of notes were being waved at the Chairman when, as the usual hour of closing the meeting had passed, he asked Mr. McCormack to reply. The nine successful in the competition to catch the

Chairman's eye were Messrs. Harry, Halton, J. S. Brown, Lines, Roach, Beetlestone, Dwyer, King and Roberts and the lecturer succinctly disposed of the many questions asked and riews expressed.

Mr. McCormack was thanked for his contribution by enthusiastic applause

Seventy-four were present at the 58 th meeting, the last of the 1925-6 Session which took place on the 28th April.

The members and visitors stood in silence as a mark of respect to the memory of the late Mr. J. H. Thow, onetime Vice-Chairman, and of Mrs. Robb, wife of a former Chairman of this Centre. Mr. Thow and Mrs. Robb died during April.

The certificates gained in the 1925-6 Essay Competition were presented to:—Mr. C. A. Maggs, Mr. A. E. W. Maslin, Mr. F. W. Dye, and Mr. C. L. Wicks, the first two of whom had each received a cheque at an earlier date. The Chairman, in handing over the certificates congratulated the staff of the South Midland District on its splendid record in gaining 7 out of a total of \(2 \bullet\) awards made in connection with the three competitions held to date.

The paper read at the meeting was entitled:-" The Duties of an Inspector," by Mr. F. D. Traviss.

The lecturer first dealt with the seneral responsibilities of Inspectors and passed on to give his views about the training of workmen. The U.C.C. and U.M.C. systems came under notice, two posers within the construction costing system were enunciated and in connection with maintenance the question of faults was discussed.

The preparation of estimates was described under the headings of overhead and internal and the engineering work required before a new rural exchange was ready for opening was explained. Mr. Traviss dealt with the organisation necessar! in arranging for the supply of stores for works and detailed the records set up.

Advice Note work and pole spottings were touched upon and the system adopted for the filing of W.O's. A.N's and Maps was described. The routine of recording, with special reference io A.N's route cards and surplus stores, was outlined.

The paper ended with the lecturer's views on the question of the grade whom he considered should be employed in the negotiation of wayleaves.

The last minutes of the Session were profitably occupied in answering the questions put by Major Harris, Messrs. Stevenson, Peck, Dwyer, W. L. Tavlor, Capt. Horton, Messrs. Lewis, Atkins, Wakefield, Haloon, Campbell and Diekinson.

The Chairman, in thanking Mr. Traviss, stated that the record number of questions had demonstrated the great interest which the audience had in the subject of the lecture.

The past Session has been a successful one, the average attendance at the seven meetings has been 64. The number of the offers receised of papers to be read during the next Session is most encouraging.
A.W.L.

\section*{BOOK REVIEWS.}
> "Elementary Electrical Engineering," B! O. R. Randall London: Sir Isaac Pitman \& Sons, Ltd. Pps. 233. 5s. nett.

> This book should prove useful to those taking a laboratory course in Electrical Engineering. It deals with the subject essentially from a practical standpoint, but contains enough theory to make it interesting and intelligible without at the same time being too mathematical.

> Useful chapters appear on instruments, D.C. motors and generators and simple A.C. circuits. The subject of secondary cells, however, which nowadays is of special interest to all P.O. Engineers concerned with the installation and maintenance of small power plants receives scant treatment, as do also the chapters on electric lamps and ars.
> H.C.J.

\section*{STAFF CHANGES.}

POST OFFICE ENGINEERING DEPARTMENT.
Promotions.
\begin{tabular}{|c|c|c|c|c|}
\hline Name. & & Grade. & Prometed to. & Date. \\
\hline Pennington, W. & ... & Executive Engincer, London District. & Asst. Suptg. Engr., London District. & 18-5-26 \\
\hline Finlayson, W. J. & \(\ldots\) & \begin{tabular}{l}
Assistant Engineer, \\
N.West District.
\end{tabular} & \begin{tabular}{l}
Executive Engineer, \\
N.West District.
\end{tabular} & 25-3-26 \\
\hline Sharpley, A. J. & & Assistant Engineer, E.-in-O. Office. & \begin{tabular}{l}
Executive Engincer, \\
E. District.
\end{tabular} & 1-4-26 \\
\hline McMulin, J. F. & & Assistant Enginecr, S.Wa. District. & \begin{tabular}{l}
Executive Eingineer, \\
S.Mid. District.
\end{tabular} & 6-4-26 \\
\hline Gibbon, A. O. & \(\cdots\) & Assistant Engineer, E.-in-O. ()ffice. & Executive Engincer, E.-in-C. Office. & 3-4-26 \\
\hline Fleetwood, H. O. & & Assistant Enginecr, Mct. Power District. & Executive Enginerr, Met. Power District. & To be fixed later. \\
\hline Croker, J. R. ... & & Assistant Engineer, E. District. & Executive Enginecr, S.E. District. & do. \\
\hline Escott, H. & \(\ldots\) & Assistant Engineer, S.Lancs. District. & \begin{tabular}{l}
Executive Enginerer, \\
S.Lancs. District.
\end{tabular} & do. \\
\hline Bedford, J. G. & ... & Prob. Assistant Engr., E.-in-C. Office. & Assistant Engineer, E.-in-C. Office. & 1-4-26 \\
\hline Missen, E. ... & \(\cdots\) & Prob. Assistant Engr., E.-in-C. Office. & Assistant Engincer, \(\mathrm{E} .-\mathrm{in}-\mathrm{C}\). Office. & I-4-26 \\
\hline Chinn, W. E. ... & & Prob. Assistant Engr., E.-in-C. Office. & \begin{tabular}{l}
. Issistant Engineer, \\
E.-in-C. ()ffice.
\end{tabular} & 1-4-26 \\
\hline
\end{tabular}

\section*{STAFF CHANGES.}

Promotions-continued.

Romain, W. A. B.
Keir, A. D.
Parker, T.
Green, H. W.
Richards, T.
Luxton, W. (i.
Turner, H. M.
Swift, R. E.
Knowers, A. D. V. ...
Brett, S. I.
Potts, E.
Chew, W. G. N.
Franklin, R. H.
Berkeley, G. S.
Hibberd, W. A.
Harvey, E. I).
Phillips, R. S.
Ackerman, H. M. W...
Penn, H. A.
Tester, H. F.
Murphy, J. C.
Blackman, R. W.
Thorpe, I.
Allen, J. L..
Lock, G. R.
Stead, A. D. ...
Sandford, W. H.
Wallis, H. W.
Eaves, A.
Seach, G. E. ...
Gilbert, F. W....
King, R. R.
Partington, B. \(\dddot{\mathrm{G}}_{\text {. }}\).

Promotions continued.
\begin{tabular}{|c|c|c|}
\hline Chief Inspector, & Assistant Engineer, & 27-3-26 \\
\hline London District. & I ondon District. & \\
\hline Chief Inspector, & Assistant Engineer, & To be \\
\hline Scot.E. District. & Scot.W. District. & fixed later. \\
\hline Chief Inspector, & Assistant Engineer, & do. \\
\hline N.E. District. & S.E. District. & \\
\hline Chief Inspector, & Assistant Engincer, & do. \\
\hline N.Wa. District. S.W.I, & N.Wa. District. Inspector, & 16-11-25 \\
\hline N. District. & N. District. & \\
\hline Prob. Inspector, & Inspector, & 12-1-26 \\
\hline E.-in-C. Office. & E.-in-C. Office. & \\
\hline Prob. Inspector, & Inspector, & 12-I-26 \\
\hline S.I.ancs. District. & S. Lancs. District. & \\
\hline Prob. Inspector, & Inspector, & 12-1-26 \\
\hline E.-in-C. Office. & E.-in-C. Office. & \\
\hline Prob. Inspector, & Inspector, & 12-1-26 \\
\hline E.-in-C. Office. & E.-in-C. Office. & \\
\hline Prob. Inspector, & Inspector, & 12-1-26 \\
\hline London District. & I ondon District. & \\
\hline & " & 12-1-26 \\
\hline Prob. Inspector, & Inspector, & 12-1-26 \\
\hline E.-in-C. Off & E.-in-C. Offic & 12-1-26 \\
\hline ", & , & 12-1-26 \\
\hline & ,' & 12-1-26 \\
\hline Prob. Inspector, & Inspector, & 12-1-26 \\
\hline London District. & London District. & \\
\hline Prob. Inspector, & Inspector, & 12-1-26 \\
\hline E.-in-C. Office. & E.-in-C. Office. & \\
\hline Prob. Inspector, & Inspector, & 12-I-26 \\
\hline London District. & London District. & \\
\hline Prob. Inspector, & Inspector, & 12-1-26 \\
\hline London District. & Iondon District. & \\
\hline S.W.I, & Inspector, & 28-2-26 \\
\hline London District. & I ondon District. & \\
\hline S.W.r, & Inspector, & 18-4-26 \\
\hline Scot.W. District. S.W. 1 , & \begin{tabular}{l}
Scot.W. District. \\
Inspector
\end{tabular} & \\
\hline E.-in-C. Office. & E.-in-C. Office. & 1-3-26 \\
\hline S.W.I, S.E. District. & Inspector, S.E. District. & 17-2-26 \\
\hline ,, & ,' & 22-6-2 5 \\
\hline , , & , & 8-3-26 \\
\hline ', & " & 14-12-25 \\
\hline ', & " & 17-5-26 \\
\hline ', & ', & 24-5-2 5 \\
\hline & " & 14-5-26 \\
\hline S.W. 1, & Inspector, & I-2-26 \\
\hline E. District. & E. District. & \\
\hline ', & " & 26-1-26 \\
\hline & " & 20-3-26 \\
\hline S.W.r, & Inspector, & 19-10-25 \\
\hline S.I.ancs. District. & S.Lancs. District. & \\
\hline
\end{tabular}

Appeintments.
\begin{tabular}{cc|c|c}
\hline Name. & Grade. & Date. \\
Richards, E. M. & \(\ldots\) & \(\ldots\) & Probationary Assistant Engineer, \\
Stratton, J. & \(\ldots\) & \(\ldots\) & Testing Branch. \\
\hline \(\mathbf{2 2 - 3 - 2 6}\) \\
\hline
\end{tabular}

\section*{STAFF CHANGES.}

Transfers.
\begin{tabular}{|c|c|c|c|}
\hline Name. & From & To. & Date. \\
\hline McCormack, W. & Executive Engineer, S.Lancs. District. & Executive Enginecr, S.E. District. & To be fixed later. \\
\hline Jackson, J. M. & Assistant Engineer, & Assistant Engineer, & 14-3-26 \\
\hline Sncll, W. S. & Assistant Engineer, E.-in-C. Office. & Assistant Engineer, S.W. District. & 16-5-26 \\
\hline
\end{tabular}

\section*{Retirements.}
\begin{tabular}{|c|c|c|c|}
\hline Name & Grade. & District. & Date. \\
\hline Whitehead, J. & Executive Engineer, & Eastern District. & 31-3-26 \\
\hline Brown, J. S. & Executive Engineer, & S.Mid. District. & 31-3-26 \\
\hline Fraser, A. & Executive Engineer, & E.-in-C. Office. & 2-4-26 \\
\hline Barradell, D. & Chief Inspector, & S.E. District. & 29-4-26 \\
\hline Sargeant, A: J. ... & Chief Inspector, & London District. & 28-5-26 \\
\hline
\end{tabular}

Deaths.

CLERICAL ESTABLISHMENT.
Appointments as Clerical Officer.

Retirements: etc.
\begin{tabular}{|c|c|c|c|c|}
\hline Name & Grade. & District & Wate. & Remarks \\
\hline Fisher, H. G. ... & Staff Officer. & E.-in-C.O. & 30-4-26 & Retired. \\
\hline Jackson, R. ... & Clerical Officer. & London. & 13-5-26 & ", \\
\hline Bell, A. ... & & Scot.W. & 25-3-26 & " \\
\hline Paxton, J. \(\quad .\). & Higher Clerical Officer. & Scot.W. & 8-4-26 & Deceased. \\
\hline Bowkett, C. & Clerical Officer. & N.Wales. & 5-5-26 & " \\
\hline
\end{tabular}

\section*{BOARD OF EDITORS.}
B. O. Anson, M.I.E.E., Chairman.

1: H. Shaughessy, O.B.E., M.I.F.E., M.I.R.E. J. W. Athinson, M.I.E.F. Lieut.-Col. А. C. Booth, M.I.F.F.
W. Cruickshank, M.I.E.E., Managing Editor. J. J. McKichan, Issistant liditor, A.M.I.E.E.

\section*{COMMUNICATIONS.}

All Remittances and Communications should be addressed to the Managing Editor, P'O. İ.E. Journal., Engineer-m-Chief's Office, Alder House, London, E.C.i.

Binding covers and copies of the Contents for Vol. 3 to 18 are available, and may be obtained from the local agents for is. 6 d . and 3 d . respectively. Subscribers can have their copies of Vol. 18 bound, with index included, at a cost of 3 s. by sending the Jourvats to the local agents. Orders should indicate whether the original binding with black lettering, or the later pattern in gold, is required.

The price of the Journal is is. \(6 d\). (is. \(9 d\). post free) per copy, or \(7 s\). per annum, post free. All back numbers \(2 s\). each.

\section*{THE INSTITUTION OF P.O. ELECTRICAL ENGINEERS.}

Officers of Colonial and Foreign Telegraph Administrations who are engaged in Eectrical Engineering Works may be admitted as Colonial and Foreign Corresponding Members respectively, after application.

Subscription payable annually in advance on ist \(\Lambda\) pril in each year:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & \\
\hline
\end{tabular}

These sums include Annual Subscription to the Journal of P.O. Electrical Engineers and the supply of all Professional Papers issued during the period covered by subscription.

Forms of application for Colonial and Foreign Membership can be obtained on application to

\author{
The Secretary \\ Institution of P.O.E. Engineers, \\ G.P.O., Alder House, E.C.i.
}

\section*{ESSAY COMPETITION, 1925-26.}

The Judges have reported to the Council that the Prize Winners in the recen: Essay Competition, arranged in order of merit, are as follows :-
i. S. H. Jonnson, External Section, Birmingham.
"The Tcchnical Certificates-Why, and how to acquire them."
2. C. A. Maggs, Repeater Station, Marlborough.
"The Vacuum 'Tube Amplifier and its application to Telephone Repeater Circuits."
3. A. W. T. Baddwin, City External Section, London.
" Secondary Batterics."
A. E. W. Maslin, Oxford Section.
" Telephone Development in Rural Districts."
5. J. E. Wrigily, Research Section, E.-in-C.O.
" Insulating Materials."
The number of entrics this year was 7 I , a great increase over the corresponding number of last year. The Judges report that the average quality is higher than last year, and, on their recommendation, the Council has decided to award Certificates of Merit to the following five competitors who were next in order of merit :-
6. H. Sattertimate, Fordrough Lane Depôt, Birmingham.
" Testing new Stationary Secondary Cells."
7. A. J. Absison, South East Fxternal Section, London.
" Coder Call Indicator."
8. F. W. Dye, Guildford Section.
"The Testing of Lines and Apparatus at Telephone Speech Frequencies."
n. R. D. Sutter, Greenock, Scot. W. District.
" Section Stock."
io. C. L. Wicks, Repeater Station, Marlhorough.
" Telephone Repcater Station Power Plant."
R. V. Hansford,

Secretary.
April, 1926.

Nothing in the world is infallible, but you get very near to infallibility when you

\section*{Let}

carry the current.

> We manufacture every type of Aerial Cable-Bare, Single, Double and Triple Braided, with ordinary compounding or our special long life "Endural " compound.

\section*{W. T. HENLEY'S TELEGRAPH WORKS COMPANY, LIMITED. \\ LONDON, E.C.1.}

\section*{INDEX TO ADVERTISERS.}

\section*{THE ELECTRICAL REVIEW.}

To the progressive Post Office Electrical Engineer the " Review" offers the best means of keeping abreast with modern developments, not only in his own section of the industry, but also in every sphere in which electricity is employed both here and abroad.

> Price 6d. weekly.

THE ELECTRICAL REVIEW, 4, Ludgate Hill, London, E.C.4.

\section*{The Engineering talent}
all over the world reads TEL.EPHONY because it helps them keep abreast of the important developments in the telephone industry.

has been the leading journal in its field for 25 years-a quarter of a century of valued service to its readers. Subscription price (foreign, including postage) 甾5.00. Issued weekly.

TELEPHONY PUBLISHING CORP., 608 S. Dearborn St., Chicago, Ill., U.S.A.

\section*{THE ONLY ACCUMULATOR IN THE WORLD WITH PLATE-GRIDS MADE OF PURE LEAD}
with the Plate Grids Die Cast and Pasted entirely by machinery. Without Wood Separators or Celluloid, eliminating internal resistance and heai which shortens the life of other makes of plates, and creating constant trouble.

ROBUST Machine-made Plates permit charge and Discharge at Continuous High Rates with Safety. No possibilities of the Flates Buckling or short-circuiting in service. No Fire or Explosion Risks when Charging above Normal Rates. A Tungstone Battery is not fully charged unless the Acid shows fully 1300 Sp.G. Tungstone Robust Machine Made Plates are in best condition when always kept fully charged.

\section*{VERY IMPORTANT ADVICE TO MOTORISTS.}

Arrange for Car Dynamo output to be permanently increased so that at a car speed of 20 miles per hour the continuous charging rate is as follows, viz.:

40 a.h. Battery minimum charging rate is 8 amps.
50 a.h. ., ". ., . 10 amps.
75 a.h. \(\ddot{M} \quad \ddot{ } \quad \ddot{H} 15\) amps.
Tungstone Machine Made and Pasted Plates are Heavier and Stronger than any other make of Plate, and therefore can be continuously charged at these higher rates than any other make of battery.

Tungstone Plate Grids being made of Pure Lead, and the Paste of Pure Lead Oxides, ensures exceptional storage capacity and quick discharges, therefore provision is made to give continuous, ample and generous power for Self-starting without cranking.
Follow these instructions and you permanently get the full benefits of the originality of Tungstone Design and Manufacture of a Pure Lead Plate and Grid giving exceptional Strength. Storage, Dependability, Reliability, Security, and Safety.

\section*{CHARGING HIGH TENSION AT 12-16 VOLTS POTENTIAL.}

All H.T. Tungstone Accumulators are fitted with a Patent Equipment whereby each series of 12 Volts can te coupled in parallel so that these H.T. Batteries of whatever voltage can be charged at local Garages and Charging Stations on a 12-16 Volt Low Tension Charging Plant.
Charging Terminals are provided on the front of the Cabinet arranged in two rows. the top row being Positive and the bottom row Negative. When in use these charging terminals are connected in pairs so that all cells are in series.

\section*{鉒莫 \\ Apply for copy, sent post free, Illustrated Booklet"Photography tells the Story of the Tungstone Accumulator."}

Please address all communications to the Distrib:tors' Offices and Showrooms:
TUNGSTONE ACCUMULATOR CO., LTD.,
3, ST. BRIDE'S HOUSE, SALISBURY SQ., FLEET ST., LONDON, E.C. 4 Telegrams: "Typify, Fleet, London."

Telephone: Central 8157 (4 lines).

\title{
FREDERICK SMITH \& CO., \\ incorporated in
}

The London Electric Wire Co. \& Smiths, Ltd.,
anaconda works, SALFORD, MANCHESTER.

\section*{HARD DRAWN H.C. COPPER LINE WIRE.}

Special Tinned H.C. Copper Wire.
COPPER TAPES AND BINDERS FOR LINE WIRE. COPPER TROLLEY WIRE SPEGIAL NON-FOULING SECTIONS.

\section*{SILICIUM BRONZE WIRE \\ "C" Quality for Telephone Lines, \&c.}

\section*{Special Electric "Zeva," SOLDERING IRON for Telegraph and Telephone purposes.}

Electric " Zeva" Soldering Irons have no need of spare-elements. As a consequence the costs of maintenance are nil.
N.V. ELECTRICITEITS MAATSCHAPPY "ZEVA," AMSTERDAM (HOLLAND).

\author{
Telegraphic Address: "ZEVA."
}

\title{
THE INSTITUTION OF POST OFFICE ELECTRICAL ENGINEERS. PRINTED PAPERS.
}

\author{
The following papers, contributed to the proceedings of the Institution, have been printed by authority of the Council and may be obtained from \\ "The LIBRARIAN, \\ The Institution of Post Office Electrical Engineers, G.P.O. WEST, LONDON, E.C.'
}
No. \(54 .+\) " THE I.OADING OF AERIAL LINES AND THEIR ELECTRICAL CONSTANTS."-J. G. Hillis.No. 57. "PRIVATE BRANCH EXCHANGES."-D. H. Kexnedy and J. W.9d.
No. 59. "THE HISTORICAL BASIS OF MODERN PRINTING TELE-Graphl'."-H. H. Harrison ...
9d.
No. 6i. " WIRELESS C.ALL DEVICES."-L. B. Turner 6d.
 6d.
No. 65. "BUILDING MATERIALS: PROPERTIES, MANUFACTURE, AND USE OF."-L. Tanner.. 6d.
No. 67. "MULTIPLE WAY I)UCT WORK."-D. C. Savory 6d.
No. 70.+ " TELEPHONOMETRI"."-B. S. COHEN, A.M.I.E.E. 6d.
No. 72. "THE WESTERN ELECTRIC COMPANY'S ALTOMATIC TELEE- PHONE SYSTEM."--B. O. Anson IS.
No. 74. "THE ELECTRICAL PHYSICS OF THE ATMOSPHERE."-J. E.Taylor, M.I.E.E.9d
No. 75. + " TELEPHONE REPEATERS."--... B. Hart 9d.
No. 79. "RECENT DEVELOPMENTS IN (INDERGROLND CONSTRUC- TION."-A. O. Gibbon 9d.
No. 8o. "SOME NOTES AND VIEWS UPON TELEPHONE FITTING WORK."--. A. C. Greening, A.M.I.E.E. Is.
No. 8i. "TELEGRAPH ANI) TEIEPHONE ENGINEERING IN THE United STATES.’"- Sir William Noble, M.I.E.E. i/b. 1/6
No. 82. "SECONDARY' CELLS."-R. G. De Wardt, A.M.I.E.E. is.No. 83.+ "FOUR-WIRE TELEPHONIC REPEATER SISTEMS." - C.Robinson. B.A., A.M.I.E.E., and R. M. Chamyey, B.Sc.,Assoc.M.Inst.C.E.9d.
No. 84. "THE RELAY SYSTEM OF ALTOMATIC SWITCHING."-H. W. Dipple, A.M.I.E.E. 1/3
No. \(85 .+\) " THE INFLLUENCE OF TRAFFIC ON ALTOMATIC EXCHANGE
No. \(85 .+\) " THE INFLLUENCE OF TRAFFIC ON ALTOMATIC EXCHANGE DESIGN."-G. F. O'peti, B.Sc., A.K.C., M.I.E.E. 1/6
No. 86. "SOME EXPERIMENTS ON CARRIER CURRENT TELE- PHONY."-C. A. Taymor, b.Sc., and R. Bramferd, B.A.,Assoc.M.Inst.C.E.
6d.
No. 87. "CONCRETI: WORK iNI REINFORCEMENT."-b. J. Beasley 6d.
No. 89.† " CORROSION OF I.EAD COVERED CABIES BY EIECTRO-LJTIC ACTION."--. S. C. Bartaolomen, M.I.E.E.\(1!3\)
No. go.t "AUTOMATIC TEIEPHONY IN MLITI-OFFICF ARFAS."-G. F. O'dell, B.Sc., A.K.C.
No. 9r. "THE CENTRAIISATION OF CORD RFPMRS." -... G.
No. 92. "TELEPHONE METERS AND COIN COLLECTING BOXES.",-W: Cremosshavk and F. McClarence.15.
IS.
No. 97.t "THE ECONOMICLI PROVISION OF PLANT FOR TELE-PHONE DEVEIOPMENT." - G. H. A. Vildgoose,A.M.I.E.E., and I. J. Pritt, A.M.I.E.E.9d.
No. 98. "MAINTENANCE PRECISION TESTING OF MAIN TRUNK CABLES."-B. Lister is.
C. Robinson, B.A., A.M.I.E.F., and R. M. Chminey. B.Sc.,Assoc. M.I.C.E.
Brown, A.M.I.E.E. I/3
No. roo.t " SIEMENS No. IG AUTOMATIC EQUIPMENT."-Cnis. Ẅ.
\(1 / 3\)
No. iom.t "TELEPHONE TRINSMISSION."--J. E. Statters

\footnotetext{
+ The Council have awarded Institution Medals for these papers.
}

AUTOMATIC TELEPHONES

QUETTA PUBLIC EXCHANGE BUILDING

\section*{India's Tribute}

THE following letter has been received from the Office of the Deputy Postmaster-General, Sind Baluchistan :-
"I am completely satisfied with the Quetta Exchange. It has given no trouble whatever, and the opinions of the Subscribers whom I have asked about the service are unanimously favourable. I congratulate you on the successful installation of an excellent system."
The "Relay" system is unique-it employs no electro-mechanical switches, but is constructed entirely with relays of special design and manufacture. It is practically silent and motionless, and is immune from troubles due to dust, heat, vibration, etc. There is no wear and tear, and maintenance is reduced to a minimum.
"Relay" installations have been supplied to i8 Governments and administrations and more than 150 installations have been supplied to the British Post Office.

Write for fully illustrated technical booklet No. 9.
THE RELAY AUTOMATIC TELEPHONE CO., LTD., Marconi House, Strand, London, W.C.2.

\section*{PEEL-CONNER "LONG-LIFE" CORDS}

The economics of the telephone cord, whether for the subscriber's set or the switchboard, provide a useful field for study by the telephone maintenance engineer.

There is much more in the subject than at first sight appears. When tendered prices are under consideration prior to an order being placed a leaning towards the lowest price must very generally be felt. There comes into play, however, the maintenance cost, often considerable, of sending a mechanic to replace or repair a worn-out cord, and also the great damage to the reputation of the service resulting from the trials of the subscriber in the period during which the cord by "scraping" and "cut offs " is fitfully announcing its approaching end.

The greater the useful life of the cord the less frequent these two burdens become, and the resulting reduction in the annual maintenance costs and the improved relations with the telephone using public will many times outweigh the slightly greater first cost of the "Long-Life" cord.

For over four years the Peel-Conner "Long-Life" cords have been used by many telephone administrations all over the world. Even in tropical countries there are administrations that, having tested and proved the merits of our "Long-Life" cords, have settled on their use as the standard for the future.

Quotations and full details of Peel-Conner " Long-Life" Cords and Cordage will gladly be furnished upon application being made to either of the addresses below.

\section*{Peel-Conner Telephone Works}
(Proprietors-The Genera! Electric Co., Ltd.)
COVENTRY, ENGLAND.
HEAD OFFICE
AND WORKS:
STOKE, COVENTRY.
Telephone: COVENTRY 1310.
Telegrams:
"SPRINGJACK,'" COVENTRY.

\section*{\(\frac{\text { LONDON OFFICE: }}{\text { MAGNET HOUSE, }}\) KINGSWAY, W.C.2. \\ Telephone: REGENT 7050.}

Telegrams:
Peelcontel, Westcent, London."

\section*{Half a century's experience}
is built into every yard of Trunk Telephone Cable manufactured and suppied by us.

That such experience and the articles produced creates confidence among buyers is proved by our constantly increasing business in this direction.

The efficiency of the National Telephone service depends largely on J. \& P. Cables because they are used in constantly increasing quantities, and that they are so used should influence larger and more frequent orders from the Dominion and other authorities.

It should influence you to a favourable consideration of the Cable distinguished by that "little more" in quality which means so much in service.

\section*{JOHNSON \& PHILLIPS, Ltd.}

\section*{Where the Cables come from. \\ Charlton, London, S.E.7.}
```


[^0]:    Complete list
    posit free
    PITMAN'S, Parker Street, Kingsway, W.C.2.

