Fractions and Their Decimal Equivalents. The decimal equivalents in both inches and millimeters for the more commonly used fractions are given in Table No. 9. One inch equals 25.4 millimeters.

Table No. 9
Decimal Equivalents of Fractions

64ths.	Fractions	Decin	nals	64ths.	Fractions	Deci	mals
(Inches)	(Inches)	(Inches)	(mm.)	(Inches)	(Inches)	(Inches)	(mm.)
1 2 3 4	1/32	.0156 .0313 .0469 .0625	0.397 0.794 1.191 1.587	33 34 35 36	17/32 9/16	.5156 .5313 .5469 .5625	13.097 13.493 13.890 14.287
5 6 7 8	3/32	.0781 .0938 .1094 .1250	1.984 2.381 2.778 3.175	37 38 39 40	19/32	.5781 .5938 .6094 .6250	14.684 15.081 15.478 15.874
9 10 11 12	5/32	.1406 .1563 .1719 .1875	3.572 3.969 4.366 4.762	41 42 43 44	21/32 11/16	.6406 .6563 .6719 .6875	16.272 16.668 17.065 17.462
13 14 15 16	7/32	.2031 .2188 .2344 .2500	5.159 5.556 5.953 6.350	45 46 47 48	23/32	.7031 .7188 .7344 .7500	17.859 18.256 18.653 19.050
17 18 19 20	9/32	.2656 .2813 .2969 .3125	6.747 7.144 7.541 7.937	49 50 51 52	25/32 13/16	.7656 .7813 .7969 .8125	19.447 19.843 20.240 20.637
21 22 23 24	11/32	.3281 .3438 .3594 .3750	8.334 8.731 9.128 9.525	53 54 55 56	27/32 7/8	.8281 .8438 .8594 .8750	21.034 21.431 21.828 22.225
25 26 27 28	13/32 7/16	.3906 .4063 .4219 .4375	9.922 10.319 10.715 11.112	57 58 59 60	29/32 15/16	.8906 .9063 .9219 .9375	22.621 23.018 23.415 23.812
29 30 31 32	15/32	.4531 .4688 .4844 .5000	11.509 11.906 12.303 12.700	61 62 63 64	31/32	.9531 .9688 .9844 1.0000	24.209 24.606 25.003 25.400

Handy Equations. The following equations represent the most useful of the mensuration and cost formulae:

Equation 1—To find the area (A) of a circle:

$$A=\pi r^2$$
, or $A=0.7854\ d^2$ Where: $r=$ radius $d=$ diameter $u=3.1416$

Equation 2—To find the circumference (C) of a circle:

$$C = 2 \pi r$$
, or $C = \pi d$

Equation 3—To find the length of an arc of a circle:

length of arc
$$=\frac{\pi \tau \varnothing}{180}$$
 Where: $\varnothing = \text{arc degrees}$

Equation 4—To find the area of a triangle whose angles are designated as A, B and C and the sides opposite as a, b and c:

$$A = \frac{1}{2} ab \sin C$$

Equation 5—To find the area of a triangle whose altitude is h and base is b:

$$A = \frac{hb}{2}$$
 Where: $A =$ area of triangle

Equation 6—To find the hypotenuse of a right triangle when the two sides are given:

$$H = \sqrt{a^2 + b^2}$$
 Where: $H = \text{hypotenuse}$
 $a = \text{side a}$
 $b = \text{side b}$

Equation 7—To find the volume of a sphere:

$$V = (4/3) \pi r^3$$
, or $V = 4.189 r^3$

Equation 8—To find the volume of a cylinder:

$$V=A_{i}h$$
 Where: $A_{b}=$ area of base (πr^{2}) $h=$ height of cylinder

Equation 9—To find compound interest factor for n years:

$$X = (1+i)^n$$
 Where: $n =$ number of years $i =$ interest rate (a fraction)

Equation 10—To find present worth of \$1.00 to be spent at the end of any year, n:

$$PW = \frac{1}{(1+i)^n}$$

Equation 11—To find present worth of an annuity of \$1.00 for n years:

$$PW_a = \frac{1-(1+i)^{-n}}{i}$$

Ohms Per Mil-Foot—Temperature Coefficient and Relative Resistance. The Mil-Foot resistance of any conductor is the resistance in ohms of one Mil-Foot of the conductor, i.e., a conductor one mil in diameter and one foot long. By knowing the Mil-Foot resistance of a material it is easy to compute the resistance of any size conductor.

The rise or fall in resistance of any material with changes in temperature is expressed by the temperature coefficient of resistance. This is a numerical value which gives the decimal change in resistance per degree centigrade which any material undergoes with changes in temperature. Most conductor materials have positive temperature coefficients, i. e., their resistance increases as the temperature is increased. Carbon has a negative temperature coefficient. Some conductor alloys have virtually a zero temperature coefficient, i. e., their resistance does not vary with temperature changes. These alloys are used for the coils and resistors in testing instruments. Manganin is an excellent zero temperature coefficient type of wire.

Corrections for resistance changes with temperature are often required in connection with cable fault location work.

Equations which are useful in dealing with the effect of temperature on wire resistance are given on page 22 of Section I.

Table No. 10 gives values of Mil-Foot resistance, temperature coefficient and relative resistance of common conductors and resistance materials.

1	1	1 21	
Material	Ohms Per Mil-Foot	Temperature Coefficient	Relative Resistance
Aluminum	16.06	.00446	1.55
Advance	294.00	.00002	28.30
Brass	50.00	.0016	4.82
Copper	10.37	.00393	1.00
Iron	60.14	.0050	5.82
Manganin	290.00	.000015	27.90
Nichrome	675.00	.00017	65.20
Ohmax	1000.00	.000066	96.40
Silver	9.796	.0038	.94
Constantan	294.0	.00001	28.34

Table No. 10

Resistance Characteristic of Common Metals

Note 1.-Mil-Foot resistance at 20°C.

Note 2.—Temperature Coefficient for an initial temperature of 20°C.

Note 3.—Relative resistance with respect to copper.

Useful Wire Formulas. The resistance of a wire of any size can readily be computed if the *resistivity* of the conductor material is known. The formula is:

$$R = \frac{l}{a}K$$

Where: R = resistance in ohms, l = length in feet, a = area in circular mils and K = mil-foot resistance in ohms. The *mil-foot* resistances of various conductor materials are given in Table No. 10. *Mil-foot resistance* is the resistance of a wire one mil in diameter and one foot long. Other useful copper wire formulas are given in Table No. 11.

Table No. 11 Useful Copper Wire Formulae

(1)—Feet per ohm = Area in cir. mils
$$\times$$
 0.09642

(2)—Ohms per 1000 feet =
$$\frac{10371.176}{\text{Area in cir. mils}}$$

(3)—Ohms per pound = $\frac{3,426,279}{(\text{Area in cir. mils})^2}$
(4)—Pounds per ohm = $\frac{(\text{Area in cir. mils})^2 \times 0.29186}{1,000,000}$
(5)—Feet per pound = $\frac{330,361}{\text{Area in cir. mils}}$

Note: If it is desired to express the above in metric units see Table No. 8 for conversion factors.

Temperature Coefficient Computations. The resistance of most metallic conductors increases as the temperature increases.

The wire tables in this section give the resistance at a temperature of 20° centigrade. If it is desired to find the resistance at some other temperature the following formula may be used:

$$R_t = R_{20} [1 + K (t - 20)]$$

Where: $R_t = \text{resistance}$ at the new temperature $R_{20} = \text{resistance}$ at 20° Centigrade K = temperature coefficient (see Table No. 10) t = new temperature

Temperature coefficient of copper is 0.00393 at 20° Cent. It will be noted that temperature coefficients are usually given for an initial temperature of 20° Cent. These coefficients will not be correct for other initial temperatures. The following example illustrates the use of the above formula.

Example: The resistance of 1000 feet of No. 16 gauge copper wire is approximately 4.0 ohms at 20° Cent. What is the resistance at 50° Cent.?

 $R_1 = 4.0 \ (1 + 0.00393[50-20]) = 4.47 \ \text{ohms}$

Skin Effect in Conductors. Because of certain self inductance effects alternating current tends to flow in the circumference rather than uniformly throughout a conductor. The magnitude of this effect is proportional to the frequency and the cross section area of the conductor. Its effect is to increase the effective resistance of a conductor. This action is referred to as skin effect.

The following table gives the approximate factors by which ohmic resistance of a conductor should be multiplied to determine the effective resistance of a copper conductor so far as skin effect is concerned.

Where Conductor Size in Cir. mils times frequency does not exceed value shown	Multiplying Factor to Get Effective Resistance
10,000,000	1.000
20,000,000	1.008
30,000,000	1.025
40,000,000	1.045
50,000,000	1.070
60,000,000	1.096
70,000,000	1.126
80,000,000	1.158
90,000,000	1.195
100,000,000	1.230
125,000,000	1.332
150,000,000	1.443
175,000,000	1.530
200,000,000	1.622

Example. Determine multiplying factor for a 10,000 circular mil wire at a carrier frequency of 10,000 cycles. $10,000 \times 10,000 = 100,000,000$ or a factor of 1.23.

Due to skin effect Copperweld conductors compare favorably, at the higher carrier frequencies with copper. The increase in resistance with frequency of a No. 12—N. B. S. (104 mil) Hard drawn copper wire pair is shown in the following table.

Table No. 12 Effective Resistance of 104 mil Copper Pair for Various Frequencies

Frequency in Cycles	Resistance Per Cct. Mile (in ohms)
D-C	10.30
1000	10.40
5000	11.10
10000	13.00
20000	17.15
30000	20.60
40000	23.30
50000	25.70
75000	30.75
100000	35.10

Wire Gauges. It has been the practice for many years to designate wire sizes by gauge numbers. The present trend is merely to express the size in terms of the diameter in mils (thousandths of an inch). This avoids the confusion inherent to the use of gauge numbers.

There are three gauges used in connection with telephone wires, these are:

- (1)—The American Wire Gauge (A. W. G.) (same as Brown and Sharpe Gauge (B & S).
- (2)—The Birmingham Wire Gauge (B. W. G.).
- (3)—The New British Standard (N. B. S.).

The A. W. G. gauge is extensively used to express the sizes of all types of copper and aluminum wire used in both the telephone and electrical field with the exception of hard drawn copper telephone line wire. It is interesting to note that the mathematical relationship between successive A. W. G. gage numbers is such that a decrease of three gauge numbers results in a wire which is approximately one-half the resistance, double the area and double the weight. This is shown in the following tabular comparison of a No. 1 and a No. 4 copper wire.

No. 1 (AWG) Cop	per Wire	No. 4 (AWG) Copper Wire
Wt. per mile (lbs.)	1338	667
Area in Cir. Mils.	83690	41740
Ohms per mile	0.6542	1.312

The Birmingham Wire Gauge is used extensively in this country to express the sizes of iron and steel telephone and power line wires. It is arranged in much the same manner as the A. W. G. but the B. W. G. wires for a given gauge number are larger than the A. W. G. gauge.

The New British Standard Gauge is used primarily in this country for hard drawn copper telephone line wires. Its use is giving way, however, to the practice of expressing telephone line wires in terms of decimal equivalents. For example the standard hard drawn line wire sizes are: 0.080 (No. 14 N.B.S.), 0.104 (No. 12 N.B.S.), 0.128 (No. 10 N.B.S.) and 0.165 (no N.B.S. gauge number set up).

A comparison of the respective diameters for the various gauges is given in Table No. 13.

Annealed Copper Wire Table. Copper wire is made by rolling red hot copper billets down to rods about % inches in size and these are then pulled or drawn through a succession of dies to get the desired size. The drawing process hardens the wire, hence, for all purposes requiring wire that is relatively soft the wire is annealed after it has been drawn. The various characteristics of annealed copper wire in sizes from 4-0 to 40 is given in Table No. 14-A for English units and in Table No. 14-B for metric units. These tables are based on copper wire of 100% conductivity, i. e., 10.371 ohms per mil foot. Commercial copper wire may be expected to depart from those values as much as 1 or 2%.

Table No. 13 Comparison of Wire Gauges—Diameters in Inches

			
	B & S	B. W. G.	N. B. S.
Size	A. W. G.	Birmingham	New British Standard
	American Wire Gauge	Wire Gauge	New British Standard
4/0	.460	.454	.400
3/0	.410	.425	.372
2/0	.365	.380	.348
1/0	.325	.340	.324
1	.289	.300	.300
2	.258	.284	.276
3	.229	.259	.252
4	.204	.238	.232
5	.182	.220	.212
6	.162	.203	.192
7	.144	.180	.176
8	.128	.165	.160
9	.114	.148	.144
10	.102	.134	.128
11	.091	.120	.116
12	.081	.109	.104
13	.072	.095	.092
14	.064	.083	.080
15	.057	.072	.072
16	.051	.065	.064
17	.045	.058	.056
18	.040	.049	.048
19	.036	.042	.040
20	.032	.035	.036
21	.0285	.032	.032
22	.0253	.028	.028
23	.0226	.025	.024
24	.0201	.022	.022
2 5	.0179	.020	.020
26	.0159	.018	.018
27	.0142	.016	.0164
28	.0126	.014	.0148
29	.0113	.013	.0136
30	.0100	.012	.0124
31	.0089	.010	.0116
32	.0080	.009	.0108
33	.0071	.008	.0100
34	.0063	.007	.0092
35	.0056	.005	.0084
36	.0050	.004	.0076
37	.0045		.0068
38	.0040		.0060
39	.0035		.0052
- 40	.0031		.0048

Table No. 14-A
Characteristics of Annealed Copper Wire (English Units)

(Courtesy Phillips Electrical Works, Ltd.)

Gauge No.		Cross Sectional Area	Wei	ght	Resis	tance
B. & S. or A.W.G.	Diameter in Inches	Sectional Area Weight Area Lbs. Lbs. Per 1000 Per Mils Mils Per 1000 Per Per 1000	Lbs. Per Mile	Ohms Per 1000 Ft. at 20° C.	Ohms Per Mile at 20° C.	
4/0 3/0 2/0	.4600 .4096 .3648	167800	507.9	2681.7	.04901 .06180 .07793	.2587 .3263 .4114
1/0 1 2	.3249 .2893 .2576	83690	253.3	1337.4	.09827 .1239 .1563	.5188 .6542 .8252
3 4 5	.2294 .2043 .1819	41740	126.4	841.10 667.39 529.05	.1970 .2485 .3133	1.040 1.312 1.654
6 7 8	.1620 .1443 .1285	20820	63.02	419.54 332.74 263.89	.3951 .4982 .6282	2.086 2.630 3.317
9 10 11	.1144 .1019 .09074	10380	31.43	209.24 165.95 131.57	.7921 .9989 1.260	4.182 5.274 6.652
12 13 14	.08081 .07196 .06408	5178	15.68	104.38 82.79 65.63	1.588 2.003 2.525	8.384 10.57 13.33
15 16 17	.05707 .05082 .04526	2583	7.818	52.04 41.27 32.73	3.184 4.016 5.064	16.81 21.20 26.73
18 19 20	.04030 .03589 .03196	1288	3.899	25.96 20.58 16.32	6.385 8.051 10.15	33.71 42.51 53. 5 9
21 22 23	.02846 .02535 .02257	642.4	1.945	12.94 10.27 8.141	12.80 * 16.14 20.36	67.58 85.22 107.5
24 25 26	.02010 .01790 .01594	320.4	.9699	6.457 5.121 4.061	25.67 32.37 40.81	135.5 170.9 215.5
27 28 29	.01420 .01264 .01126	159.8	.4837	3.221 2.553 2.025	51.47 64.90 81.83	271.7 342.6 432.1
30 31 32	.01003 .008928 .007950	79.70	.2413	1.606 1.254 1.010	103.2 130.1 164.1	544.9 686.9 866.4
33 34 35	.007080 .006305 .005615	50.13 39.75 31.52	.1517 .1203 .0954	.8009 .6351 .5037	206.9 260.9 329.0	1092.4 1377.5 1737.1
36 37 38	.005000 .004453 .003965	25.00 19.83 15.72	.0756 .0600 .0476	.3991 .3168 .2513	414.8 523.1 659.6	2190.1 2761.9 3482.6
22	.008531 .008148	12.47 9.89	.0377 .0299	.1990 .1578	831.8 1049	4391.9 5538.7

Table No. 14-B

Characteristics of Annealed Copper Wire (Metric Units)

(Courtesy Phillips Electrical Works, Ltd.)

			W	eight	
Gauge No. B. & S. A.W.G.	Diameter m/m	Sectional Area Square m/m	Kg Per Km	Pounds Per Km	Resistance Ohms Per Km , at 20° C.
4/0	11.68	107.2	953.2	2101.5	.1608
3/0	10.40	85.03	755.9	1666.4	.2028
2/0	9.266	67.43	599.5	1321.5	.2557
1/0	8.252	53.48	475.4	1048.2	.3224
1	7.348	42.41	377.0	831.0	.4066
2	6.544	33.63	299.0	659.1	.5127
3	5.827	26.67	237.1	522.6	.6465
4	5.189	21.15	188.0	414.7	.8152
5	4.621	16.77	149.1	328.7	1.028
6	4.115	13.30	118.2	260.7	1.296
7	3.665	10.55	93.78	206.7	1.634
8	3.264	8.366	74.37	163.9	2.061
9	2.906	6.634	58.98	130.0	2.599
10	2.588	5.261	46.77	103.1	3.277
11	2.305	4.172	37.09	81.75	4.132
12	2.053	3.309	29.42	64.86	5.211
13	1.828	2.624	23.33	51.44	6.571
14	1.628	2.081	18.50	40.78	8.285
15	1.450	1.650	14.67	32.34	10.45
16	1.291	1.309	11.63	25.65	13.17
17	1.150	1.038	9.226	20.34	16.61
18	1.024	.8231	7.317	16.13	20.95
19	.9116	.6527	5.803	12.79	26.42
20	.8118	.5176	4.602	10.14	33.31
21	.7230	.4105	3.649	8.044	42.00
22	.6438	.3255	2.894	6.381	52.96
23	.5733	.2582	2.295	5.059	66.79
24	.5106	.2047	1.820	4.012	84.21
25	.4547	.1624	1.443	3.182	106.2
26	.4049	.1288	1.145	2.523	133.9
27	.3606	.1021	.9078	2.001	168.9
28	.3211	.08098	.7199	1.587	212.9
29	.2859	.06422	.5709	1.258	268.5
30	.2546	.05093	.4527	.9980	338.6
31	.2268	.04039	.3590	.7916	426.9
32	.2019	.03203	.2847	.6276	538.3
33	.1798	.02540	.2258	.4976	678.8
34	.1601	.02014	.1791	.3947	856.0
35	.1426	.01597	.1420	.3130	1079
36	.1270	.01267	.1126	.2480	1361
37	.1131	.01005	.08931	.1968	1716
38	.1007	.007967	.07083	.1561	2164
39	.08969	.006318	.05617	.1236	2729
40	.07987	.005010	.04454	.0981	3441

Breaking Strength of Copper Wire. The process of drawing copper wire through dies increases its tensile strength. Unless it is annealed after drawing it is said to be hard drawn. Medium Hard Drawn wire is partially annealed during the drawing process, and soft wire is that which is completely annealed after it is drawn. Hard and medium hard drawn wire is used for line wires, whereas soft wire is used in cables, coils, etc., where it is under little or no tensile strain.

Table No. 15 gives the mechanical and resistance characteristics for hard drawn copper wires for

sizes between 4/0 and 18.

Table No. 15 Characteristics of Hard Drawn Copper Wire

Size	Wire Diameter			Tensile Strength WEIGHT			CROSS-SECTIONAL AREA		
A.W.G.	Size Diameter (Inch) Load (Pounds .W.G. 4/0 .4600 8,143 3/0 .4096 6,722 2/0 .648 5,519 1/0 .3249 4,517 1 .2893 3,688 2 .2576 3,003 3 .2249 2,439 4 .2043 1,970 5 1819 1,591 .1650 1,326 6 .1620 1,280 7 .1443 1,030	(Pounds)	Lbs/Sq In	Pounds Per 1000, Feet	Pounds Per Mile	(Ohms Per 1000 Ft. at 68°F.)	Cir Mils	Sq In.	
4/0 3/0 2/0	.4096	6,722	49,000 51,000 52,800	640.5 507.9 402.8	3,382 2,682 2,127	.05045 , .06361 .08021	211,600 167,800 133,100	.1662 .1318 .1045	
1	.2893	3,688	54,500 56,100 57,600	319.5 253.3 200.9	1,687 1,338 1,061	.1011 .1287 .1625	105,500 83,690 66,370	.08289 .06573 .05213	
4	.2043	1,970	59,000 60,100 61,200	159.3 126.4 100.2	841 2 667.1 529.1	.2049 .2584 3258	52,630 41,740 33,100	.04134 .03278 .02600	
6	1620	1,280	62,000 62,100 63,000	82.41 79.46 63.02	435.1 419.6 332.7	.3961 .4108 .5181	27,225 26,250 20,820	.02138 .02062 .01635	
8 9	.1340 .1285 .1144	894.0 826.0 661.2	63,400 63,700 64,300	54.35 49.97 39.63	287.0 263.9 209.3	.6006 .6533 .8238	17,956 16,510 13,090	.01410 .01297 .01028	
ió 11	.1040 .1019 .09074	550.4 529.2 422.9	64,800 64,900 65,400	32.74 31.43 24.92	172.9 165.9 131.6	.9971 1.039 1.310	10,816 10,380 8,234	.008495 .008155 .006467	
12 13 14	.08081 .07196 .06408	337 0 268 0 213.5	65,700 65,900 66,200	19.77 15.68 12.43	104 4 82 77 65 64	1 652 2 083 2.626	6,530 5,178 4,107	.005129 .004067 .003225	
15 16 17 18	.05707 05082 .04526 .04030	169 8 135.1 107.5 85.47	66,400 66,600 66,800 67,000	9.858 7.818 6.200 4.917	52.05 41.28 32.74 25.96	3.312 4.176 5.266 6.640	3,257 2,583 2,048 1,624	.002558 .002028 .001609 .001276	

Comparative Data for Copper, Copperweld and Iron Telephone Wire. A comparison of the physical properties of copper, Copperweld and galvanized telephone wire can readily be made by reference to Table No. 16. Copperweld is available in both a 30 and 40 per cent conductivity type. The percentage refers to the conductivity of the Copperweld conductor as compared to a copper conductor of the same size.

Table No. 16 Copper, Copperweld and Galvanized Iron Wire Comparisons

	D:	Average Weight					Average Breaking		Average Resistance in Ohms at 68 degrees Fahr.				
Gauge	Diameter (Inch)	Lbs. Per 10	000 Feet	Lbs. Per	Mile	Load (I	Jbs.)	Per 100	0 Feet	Per 1	Mile		
A. W. G.		40% Copperweld	Copper	40% Copperweld	Copper	40% Copperweld	Copper	40% Copperweld	Copper	40% Copperweld	Copper		
4	.204	116	126	612	667	3,541	1,970	.6337	.2584	3.35	1.36		
5	.182	91.9	100	485	529	2,938	1,591	.7990	.3258	4.22	1.72		
6	.162	72.8	79.5	385	420	2,433	1,280	1.008	.4108	5.32	2.17		
7	.144	57.8	63.0	305	333	2,011	1,030	1.271	.5181	6.71	2.74		
8	.128	45.8	50.0	242	264	1,660	826.0	1.602	.6533	8.46	3.45		
9	.114	36.3	39.6	192	209	1,368	661.2	2.020	.8238	10.67	4.35		
10	.102	28.8	31.4	152	166	1,130	529.2	2.547	1.039	13.45	5.49		
11	.0907	22.8	24.9	121	132	896.3	422.9	3.212	1.310	16.96	6.92		
12	.0808	18.1	19.8	95.7	104	785	337.0	4.051	1.652	21.39	8.72		
B. W. G.		B.B.	E.B.B.	B.B.	E.B.B.	B.B.	E.B.B.	B.B.	E.B.B.	B.B.	E.B.B.		
4	.238	154	154	811	811	2,271	2,028	1.35	1.13	7.15	5.98		
6	.203	112	112	590	590	1,652	1,475	1.86	1.56	9.83	8.22		
8	.165	74	74	390	390	1,092	975	2.82	2.35	14.87	12.43		
9	.148	60	60	314	314	879	785	3.50	2.92	18.47	15.44		
10	.134	49	49	258	258	722	645	4.26	3.56	22.48	18.79		
12	.109	32	32	170	170	476	425	6.46	5.40	34.12	28.52		
14	.083	19	19	99	99	277	247	11.10	9.28	58.59	48.98		

Note-E. B. B. is the softest of the galvanized iron telephone wires!

Magnet Wire. Coils, transformer windings, etc., all use what is known as copper magnet wire. This wire is of the soft annealed type and is available in various types of insulation. The most common types with respect to insulation are:

Туре	Abbreviation	Туре	Abbreviation
Single cotton covered Double cotton covered	SCC	Enameled	E
Single silk covered	DCC SSC	Enamel silk covered	ESC
Double silk covered	DSC	Enamel cotton covered	ECC

Magnet wire is also available in special insulation capable of withstanding high temperatures. For wires larger than No. 12, a double cotton covered wire should be used because of greater ruggedness. Table No. 17 gives the weights and resistances of magnet wires.

Table No. 17 Weights and Resistances of Magnet Wire

(Courtesy Phillips Electrical Works, Ltd.)

B. & S.	Diameter	SINGLE COTTON		DOUBLE	COTTON	TRIPLE	COTTON	SINGL	E SILK	DOUBL	E SILK
Gauge	In Inches	Feet Per Lb.	Ohms Per Lb.	Feet Per Lb.	Ohms Per Lb.	Feet Per Lb.	Ohms Per Lb.	Feet Per Lb.	Ohms Per Lb.	Feet Per Lb.	Ohms Per Lb.
4/0 3/0 2/0	.4600 .4096 .3648	1.555 1.960 2.470	.000076 .00012 .00019	1.55 1.95 2.46	.000076 .00012 .00019	1.54 1.95 2.45	.000075 .00012 .00019				
1/0 1 2	.3249 .2893 .2576	3.110 3.920 4.940	.00030 .00048 .00077	3.10 3.90 4.92	.00030 .00048 .00077	3.08 3.89 4.89	.00030 .00048 .00076				
3 4 5	.2294 .2043 .1819	6.240 7.860 9.900	.0012 .0019 .0031	6.20 7.80 9.82	.0012 .0019 .0031	6.15 7.73 9.73	.0012 .0019 .0030				
6 7 8	.1620 .1443 .1285	12.46 15.70 19.78	.0049 .0078 .0124	12.35 15.55 19.55	.0048 .0077 .0123	12.23 15.42 19.36	.0048 .0077 .0122				
9 10 11	.1144 .1019 .09074	24.90 31.35 39.62	.0197 .0313 .0499	24.75 31.14 39.15	.0196 .0311 .0493	24.40 30.66 38.47	.0178 .0306 .0485				
12 13 14	.08081 .07196 .06408	49.88 62.80 79.00	.0792 .1258 .1995	49.20 61.80 77.60	.0781 .1238 .1959	48.46 60.78 76.14	.0769 .1217 .1803				
15 16 17	.05707 .05082 .04526	99.60 125.4 157.7	.3171 .5036 .8086	98.05 123.2 154.5	.3122 .4948 .7824	95.30 119.3 148.9	.3034 .4792 .7540	127 160	.5100 .8102	126 158	.5060 .8001

Table No. 17—Weights and Resistances of Magnet Wire (Cont. from page 30)

B. & S.	Diameter	SINGLE COTTON		DOUBLE COTTON		TRIPLE COTTON		SINGLE SILK		DOUBLE SILK	
Gauge	In Inches	Feet Per Lb	Ohms Per Lb.	Feet Per Lb.	Ohms Per Lb.	Feet Per Lb.	Ohms Per Lb.	Feet Per Lb.	Ohms Per Lb.	Feet Per Lb.	Ohms Per Lb.
18 19 20	.04030 .03589 .03196	198.0 249.0 313.0	1.264 2.005 3.177	193.0 243.0 304.0	1.232 1.956 3.086	188.0 234.0	1.200 1.884	200 253 318	1.277 2.037 3.227	199 249 313	1.270 2.005 3.177
21 22 23	.02846 .02535 .02257	393.0 494.0 619.0	5.030 7.973 12.60	380.0 475.0 582.0	4.864 7.666 11.85			400 506 633	5.120 8.167 12.89	393 497 620	5.030 8.021 12.62
24 25 26	.02010 .01790 .01594	776.0 971.0 1215	19.92 31.43 49.58	738.0 918.0 1146	18.94 29.71 46.77			799 1003 1270	20.51 32.47 51.83	779 974 1230	20.00 31.53 50.20
27 28 29	.01420 .01264 .01126	1518 1909 2347	78.13 123.9 192.0	1410 1750 2130	72.57 113.57 174.30			1585 2000 2478	81.58 129.8 212.7	1525 1921 2362	78.49 124.7 193.3
30 31 32	.01003 .008928 .007950	2947 3646 4519	304.1 474.3 741.5	2640 3208 3901	272.4 417.4 640.1			3139 3946 4900	323.9 513.4 804.1	2987 3696 4563	308.2 480.8 748.8
33 34 35	.007080 .006305 .005615	5559 6896 8490	1150 1799 2793	4700 5680 6820	972.4 1482 2243			6090 7677 9610	1260 2002 3161	5616 6969 8661	1162 1818 2849
36 37 38	.005000 .004453 .003965	10342 12577 15247	4290 6579 10057	8050 9460 11040	3339 4948 7282			11790 14730 18350	4890 7705 12103	10475 12783 15500	4345 6687 10224
39 40	.003531 .003145	18433 22104	15322 23187	12830 14720	10672 15441			22740 28060	18915 29435	18859 22640	15687 23749

Table No. 18 Characteristics of Galvanized Steel Strand (Courtesy American Steel and Wire Co.)

Galvanized steel strand is employed in the telephone field primarily for guy wires and as the supporting strand for aerial cable. Strand is commonly stocked in coils of 250, 500 and 1000 feet; also on reels containing 1000, 2500 or 5000 feet.

	Nominal	Nominal Diameter	Approx.	MINIMUM BREAKING STRENGTH OF STRAND, LBS.					
Number of Wires in Strand	Diameter of the Strand Inches		Weight of Strand per 1000 Ft. (Lbs.)	Common Grade	Siemens- Martin Grade	High Strength Grade	Extra High Strength Grade	Utilities Grade	
3 3 3 3	3/4 1/4 5/16 3/8	0.120 0.120 0.145 0.165	116.7 116.7 170.6 220.3	1,821 2,443 3,171	2,979 4,007 5,186	4,629 6,214 8,057	6,600 8,914 11,528	3,150 4,500 6,500 8,500	
7 7 7 7	5/32 3/16 3/16 7/32	0.041 0.052 0.062 0.065 0.072	31.8 51,3 72.9 80.3 98.3	540 870 1,150	910 1,470 1,900 2,560	1,330 2,140 2,850 3,850	1,830 2,940 3,990 5,400	2,400**	
7 7 7	9/32 5/16	0.080 0.093 0.104	121 164 205	1,900 2,570 3,200	3,150 4,250 5,350	4,750 6,400 8,000	6,650 8,950 11,200	4,600**	
777777	5/16 % 7/16 ½ 9/16 %	0.109 0.120 0.145 0.165 0.188 0.207	225 273 399 517 671 813	4,250 5,700 7,400 9,600 11,600	6,950 9,350 12,100 15,700 19,100	10,800 14,500 18,800 24,500 29,600	15,400 20,800 26,900 35,000 42,400	6,000** 11,500** 18,000** 25,000**	
19 19 19 19 19	9/16 9/16 ** ** 1	0.100 0.113 0.125 0.150 0.177 0.200	504 637 796 1,155 1,581 2,073	7,620 9,640 11,000 16,000 21,900 28,700	12,700 16,100 18,100 26,200 35,900 47,000	19,100 24,100 28,100 40,800 55,800 73,200	26,700 33,700 40,200 58,300 79,700 104,500		
87 37 37	1 11/8 11/4	0.143 0.161 0.179	2,057 2,691 3,248	28,300 36,000 44,600	46,200 58,900 73,000	71,900 91,600 113,600	102,700 130,800 162,200		

^{*}The Utilities Grade is used principally by communication and power and light industries.

**Also called Specification Grade. Can be furnished to conform to Western Union and
A. T. & T. specifications.

Table No. 19 Resistance of Galvanized Iron Wire

Gauge		Average Resistance in Ohms at 68 degrees Fahr.						
	Diameter	Per 10	00 Feet	Per Mile				
B.W.G.	(Inch)	В.В.	E.B.B.	B.B.	E.B.B			
4 6 8	.238 .203 .165	1.35 1.86 2.82	1.13 1.56 2.36	7.15 9.83 14.87	5.98 8.22 12.43			
9 10 12	.148 .134 .109	3.50 4.26 6.46	2.82 3.56 5.40	18.47 22.48 34.12	15.44 18.79 28.52			
14	.083	11.10	9.28	58.59	48.98			

Copperweld Strand is used where both high strength and freedom from corrosion characteristics are required. Copperweld strand is generally used in the thirty percent conductivity type. Characteristics are given in the following table.

Table No. 20 Physical Characteristics of Copperweld Guy Strand

(Courtesy Copperweld Steel Company)

Nominal		BREAKIN	IG LOAD	WEI		
Diameter (Inch)	Actual Diam. (Inch)	High Strength	Extra High Strength	Lbs. Per	Lbs. Per	Cross- Section Sq. In.
A.W.G.		30% Cond.	30% Cond.	1000 Ft.	Mile	
1/2 (7 No. 6)	.486	16,890	20,460	515.0	2,719	.1443
7/16 (7 No. 7)	.433	13,910	16,890	408.4	2,157	.1145
3/8 (7 No. 8)	.385	11,440	13,890	323.9	1,710	.09077
11/32 (7 No. 9)	.343	9,393	11,280	256.9	1,356	.07198
5/16 (7 No. 10)	.306	7,758	9,196	203.7	1,076	.05708
3 No. 6	.349	7,639	9,754	220.3	1,163	.06185
3 No. 7	.311	6,291	7,922	174.7	922.4	.04905
3 No. 8	.277	5,174	6,282	138.5	731.5	.03890
3 No. 9	.247	4,250	5,129	109.9	580.1	.03085
3 No. 10	.220	3,509	4,160	87.13	460.0	.02446

Galvanized Iron Telephone Wire. What is known as galvanized iron telephone wire is used both for line wire purposes and in the larger sizes for guy wires. No. 12 (.109) wire is most commonly used for telephone line wire. No. 6 (.203) is often used for guying rural telephone poles where the wire load does not exceed four wires. For long span rural telephone construction the high tensile strength (type 85 or 135) steel wire should be used. Some companies prefer to use the 85 type high strength steel even for short spans because of its greater safety factor.

Table No. 21 Characteristics of Galvanized Iron and Steel Telephone Wire

0			Average We	Average Break- ing Loads (Lbs.)			
Gauge	Diameter	Per 1000 Feet				Per Mile	
B.W.G.	(Inch)	B.B.	E.B.B.	B.B.	E.B.B.	B.B.	E.B.B
4 6 8	.238 .203 .165	154 112 74	154 112 74	811 590 390	811 590 390	2271 1652 1092	2028 1475 975
9 10 12	.148 .134 .109	60 49 32	60 49 32	314 258 170	314 258 170	879 722 476	785 645 425
14	.083	19	19	99	99	277	247

(See Section IV for data on high tensile strength galvanized steel wire.)

Fusing Currents of Wires. The current at which any wire will fuse and rupture can be determined by the formula:

$$I = A \sqrt{d^3}$$

Where: *I*—Current in amperes, d—diameter of wire in inches, and A—is a constant whose value for different metals has been established as: Copper = 10,244, Aluminum = 7,585, German Silver = 5,230, Iron = 3,148, Tin = 1,642 and Lead = 1,379.

Telephone fuses are usually made of either lead, lead-tin, bronze or copper wire. The fusing current for several types of metals is given in Tabl No. 22.

Table No. 22 Wire Fusing Currents

		1	1	T T		1
Size B.&S. Gauge	Diam. Ins.	Copper A=10244	Aluminum A=7585	German Silver A=5230	Iron A=3148	Tin A=1642
40	.0031	1.77	1.31	.90	.54	.28
38	.0039	2.50	1.85	1.27	.77	.40
36	.0050	3.62	2.68	1.85	1.11	.58
34	.0063	5.12	3.79	2.61	1.57	.82
32	.0079	7.19	5.32	3.67	2.21	1.15
30	.0100	10.2	7.58	5.23	3.15	1.64
28	.0126	14.4	10.7	7.39	4.45	2.32 -
26	.0159	20.5	15.2	10.5	6.31	3.29
24	.0201	29.2	21.6	14.9	8.97	4.68
22	.0253	41.2	30.5	21.0	12.7	6.61
20	.0319	58.4	43.2	29.8	17.9	9.36
19	.0359	69.7	51.6	35.5	21.4	11.2
18	.0403	82.9	61.4	42.3	25.5	13.3
17	.0452	98.4	72.9	50.2	30.2	15.8
16	.0508	117	86.8	59.9	36.0	18.8
15	.0571	140	103	71.4	43.0	22.4
14	.0641	166	123	84.9	51.1	26.6
13	.0719	197	146	101	60.7	31.7
12	.0808	235	174	120	72.3	37.7
iī	.0907	280	207	143	86.0	44.9
10	.1019	333	247	170	102	53.4
9	.1144	396	293	202	122	63.5
ğ	.1285	472	349	241	145	75.6
8 7	.1443	561	416	287	173	90.0
6	.1620	668	495	341	205	107

Electrical Insulating Materials. A number of materials are available for use in insulating wires, coils and electrical equipment. The design engineer is concerned with the workability, temperature limitations, and dielectric strength of insulations. The principal properties of the most commonly used insulating materials are given in Table No. 23.

Table No. 23 Characteristics of Common Insulating Materials (Courtesy Belden Mfg. Co.)

Material	Thickness	Description and Use	Dielectric Strength (Volts Per Mil) Average Values	Approximate Hottest Spot Temperature Limits		
Kraft Paper	.003"	A tough brown paper used in construction of tubes, be- tween layers, and as outer covers or wrappers for coils.	60	90°C. (194°F.)		
Glassine Paper	.00075" .0010" .0015" .002"	A glossy, hard-finished, trans- lucent paper used between layers of coils.	200	90°C. (194°F.)		
Varnished Paper	.002" .005"	Paper which has been treated with varnish to improve its heat resisting and insulating properties. Used between layers on high voltage windings.	900	105°C. (221°F.)		
Varnished Cambric	.007′′	Varnish-treated cambric, yellow or black in color and somewhat flexible. Used as core and end insulation for coils.	1100	105°C. (221°F.)		
Varnished Silk	.004"	Varnish-treated silk, yellow in color and very flexible. Used where high dielectric strength, minimum weight, or high space factors are required.	1100	105°C. (221°F.)		
Asbestos Paper	.025"	Asbestos paper is used principally for core insulation of coils which operate at extremely high temperatures.	20	125°C. (257°F.)		
Cotton Tape Fish Paper	.007" .005" .010"	Used in finishing form wound coils. A tough, heavy paper, gray in color. Used for in- sulating washers and coil tubes.	20 200	90°C. (194°F.) 90°C. (194°F.)		
Fibre	3/32" 1/8" 3/16"	A stiff material insoluble in water or natural oils. Used primarily for bobbin washers.	200	90°C. (194°F.)		
Phenol Products	As Required	An exceptionally stable, heat resisting and high dielectric moulded insulation. Used for bobbins and other purposes.	200 to 800	149°C. (300°F.)		