AJ Sifi (92)

GPO

tower
in charge senior mechanical and electrical engineer in
charge
senior public health engineer
chief architect
senior architect in charge senior structural engineer

London wl
designed by

Directorate General of
Works,
Ministry of Public-
Building and Works
E. Bedford
G. IV. Yeats
S. T. Silhan
J. .J. Taylor
R. A. Parker

The ipo tower is: an engincering dominated muilding. Its: main Sentures: are determined by the physical lumes of the parth, anel in spite of the restaurant, human life and movement are not strongly erident. But its comtribution to the man made encironment and its: primary role in human commmenication.s drau• it into the inescapable incolvement of all muilding.s with peonpl.

STRUGTURAL REQUIREMENTS

The structure is called upon to support sensitive radiotelephonic acrials at a height of not less than 3i5ift and preferably more. At this height the defleetions of the structure must be kept within strict limits to maintain the accuracy of the narrow beam transmitters. It must provide. within l50ft of the aerials, the receiving and transmitting equipment required for the translation of wircless to wired impulses. These are the primary criteria that the architect and structural engineer had to consider. Secondary requirements arise from the consequent significance of the structure as a major feature in London's skyline. its possible use as a tourist attraction, and the confined site on which construction had to take place.
The most significant superimposed loading on the structure is that of wind. The vertical load at foundation level is
approximately 13,000 ton. The wind induced moment is $7 \overline{5} .001$ ton/ft. The wind speeds assumed in estimating this moment were approximately two-thirds of those arrivel at if
 I.onding had been followed.

It is commonly felt that these procechures are conservative when applied to structures of this height and these proportions. Gauges have been incorporated in the structure and it will be of great vahe to see the published figures on the actual loads measured compared with those assumed for design.

Jurasic structure

The hasic structure (see page 1:541) of the tower is simple: a vertical concrete shaft $580 f t$ high supported on a heave raft fomidation and braced back to the adjacent low structure at

1 Detril of reinforcensent at junction of bridge link slitb (roof level of low block) and tower, 84ft above foundation level
2 Anchorage blocks in position for base slab of lower foundation

Site plan showin! new work arljacent to the existing telephone p.rchan!e in Howland Street (112in = lft)

3 Method of raising shuttering for contilenered floor slabs: a first crane sling utltsched. top shutter bolt slackened. hinge pin dropped, b shutter frobuee hinged dow'n und second crume sling
altrached; c shutter frume. hoisted clerse of floor slab and raised to hinge pin on floor ribove
4 Detril of hinge connection between shuttering and tower. The shuttering wets

84 ft above base level 1. The former needs to be very rigid in order to limit the angular deflection to within $\frac{1}{3}$ deg, and with this consideration in mind the thiek walled eylinder of the shaft was designed so that the tensile stress in the concrete at no time exceeds $3001 \mathrm{~h} / \mathrm{si} f$ in (see section and plans pl540, 1541)

Floor slabs

The floor slabs were designed as anmular dises supported along the inner edge. Model tests indicated that the fixing moment at the support was approximately two-thirds the theoretical fully fixed moment. These floors help to limit secondary stresses and reduce the possibility of circumferential buckling in the main shaft. They are thickened near the shaft to permit the passage of the 'wave guides' from the aerials.
The requirements of rigidity and accommodation for equipment near the aerial platforms results in a structure comparatively easily strengthened to carry additional loads. This facility has been exploited by providing the high level restaurant and public spaces which now form such a well known feature of the tower. The restaurant, cocktail bar and observation gallery floors are similar in construction to the equipment floors, except that the 29ft cantilevers of the restaurant are stiffened near the tower with radial diaphragm walls about 3ft Gin deep.

Bridge link

The stiffness of the structure is increased by the bridge link at the roof level of the low block. 84ft above the foundation level of the shaft. This link transmits a horizontal force of approximately 560 ton via floor and roof, and is hinged at each end to permit the differential settlement of the tower and the low building 1.

Foumintions

The tower is supported by a 92 ft square 20 ft deep ribbed raft sitting directly on the stiff London blue clay. The bridge link reduced the maximum bearing pressure (dead load and wind) from $2 \cdot 7$ ton $/ \mathbf{s q}$ ft to $1 \cdot 7$ ton $/ \mathrm{sq}$ ft—well within the acceptable limit for the clay. Restrictions on deflection of the tower require that differential settlement

4
in units comprising limber deching fixed to tur stecl
frumes. Eighteen units were required for one floor

Plan at c5 aerial gallery

EIG 20 unld

5 The slight definition of the restaurant floor is more satisfactory viewed froms nearby strects, and the strong modelling of the arerial galleries can ecssily be appreciated
6 The bridge deck is arbitrarily curved, the unit being too small to be effective. Facets of the tower curtain wall are disturbing as they edge round the circle

across the base of the tower shall also remain less than f deg. This implies the maintenance of low bearing pressures.

Construction

As with most major engineering works the practical problems of construction equal those of design. Building a $600 f t$ high tower in an urban environment calls for the use of sophisticated construction techniques and safety measures. The techniques used by the contractors. Peter Lind \& Co. have the effective simplicity of all apt solutions to problems. and the firm is to be congratulated on its achievement. The foundation excavation, immediately adjacent to heavily trafficked streets, was carried out in an ross walled cofferdam, similar to that used in the construction of the Hyde Park underpass. The wall reinforcement was placed in the bentonite slurry, which was then displaced by in-situ concrete, forming the finished wall 2.
Shaft and plat form were constructed separately. The shaft shuttering was of a normal braced timber pancls leapfrogged' up the wall in approximately 3 ft lifts.
The platform shuttering presented more difficult problems. Cantilevered table forms were used, which could be moved easily and rapidly in large sections. The method of raising the shutter forms is illustrated in 3 and 4. The tower crane and hoists were raised with the shaft construction in
approximately 15 fft lifts. Safety nets were used during the construction of the shaft.

Conclusions

The eipo tower is a sound and straightforward solution to the problems posed. It states clearly the principles of structure called into play by the requirements of the situation, and full advantage is taken of the opportunities created by the height and stiffness of the building to provide London with a landmark in scale with its size and vitality.

ARCHITECTURAL CONSIDERATIONS

The technical prowess and matter-of-fact reasoning of this modern Tower of Babel. as the pr blurb calls it . is such that it is almost presumptuous for mere architects to comment or quest ion.
This is also largely true of the wider town planning considerations as the tower is so powerful a marker (photo pl537) that it would be successful in most situations. Its siting depended on the land available next to the Museum telephone exchange and also to the possibility of beaming clear of any hazards. It is also in a commercial twilight zone, clear of London's popular historic buildings and

6

controversy. Ideally a tower of this type should mar's a significant focal point. such as Piccadilly Circus as the centre of the West End. hut obriously this was impracticable for the Museum exchange was already the centre of the telecommmications system and the vision cables network for London. Presumably the tower's existence now gives beam pathways in many directions which will severely control the heights of future buildings.
From most vantage points the bottom third of the tower is hidden from view. The glazed curtain wall shaft of the transmitting floors rises to the exposed aerial galleries with the public platforms, restaurant. bar and kitchen above, toped by the lift motor rooms, tanks. ventilation plant, pulley rooms and a 40 ft lattice mast. This varicty of use naturally gives a varied silhouette which is successful from a distance except for the indecisiveness of the restaurant and har floors caused largely hy the necessity to provide a protective sereen enclosing the gallery outside the cocktail bar a late decision: when a more vigorous silhonette was badly meeded at this point as in Eric Bedford's original design. The Arehitecturrel Review (August 19(i5) has pointed out the affinity of the tower to Wren's steeples and the (iothic towers of the Houses of Parliament and much can bo learnt from this comparison. It could be questioned whether the shaft of glazed floors should have been con-
tinuous over the three lower floors of ventilation apparatus for this would have helped to break up the silhouette. Generally however the massing is a very welcome addition to the urban landscape (see pl537).
On closer inspection the circular shaft becomes a polygonal curtain wall with the facets somewhat clumsily detracting from the general circular shape 5, 6. A closer rhythm of mullions would have been happier in turning the circle. This would also have served to transform the curtain wall which has almost a domestic scale, into something more noble in keeping with the grand design. The design simply has not the panache needed for a unique building.
Internally this is even more apparent. There is a grave lack of control over the number of finishes and the consistency of their use 7. 8. At the base of the tower, the shaft concrete is beautifully boarded and shuttered. On the observation levels it is clothod in shiny green tiles (level D3), matt grey mosaic (level D2), spotty mosaic (the ultimate in nast iness, this) 6 and plastic faced cloth on level Dl. The other criticism is the domesticity of the detailing and thinking. On level $n \underline{2}$ the entry to the marvellous view is marked by a 2 ft 6in white painted flush door-it was probably hardboard faced-at the end of a 2 ft 9 in stub corridor. The red doorway and aluminium fluted walls of the ground floor hint at what might have been done. Two

7

8

9. Junction beluccre trunsornt top franbe member amel
loucre fromos ablove
illustrutes one of thr problems assuciated will is

inpressions stand ont; first the utilitarian approach resulting, presmmably. from a low budget. and second the uttention to what seems an unnecessary degree to the requirements of the fire officer.
Garnett Cloughley Blakemore d Associates was commissioned for the interior design of the upper floors by But lin's who have leased the restaurant. This firm has taken the main elements of what are very small spaces and applied an overall theme of royal bhe and pillar box red. which at night is probably very successful, to the top of the tower restaurant, the bar and the staircase between. In daylight the blue paint does not sufficiently soften the standard tower details such as coiling ventilators and fire equipment fittings but the quality is set by the details--st rong lettering. moulded light surrounds. simple chrome stick table lamps. and a specially designed carpet.
The core wall in the restanrant is sheathed in smoke mirror which successfully reflects the panoramic skyline 11 and expands a space which is only 10 ft Gin wide. This is the floor which revolves. Cash and cloakroom counters and other fitments are sculpturally designed in red plastic sheet 12. the forms continuing the circular theme. The bar space is less cramped while the kitehens and their associated service rooms are surprisingly spacious.
An exciting oval staircase joins bar, restanrant and top public viewing platform. Here the architects have painted the mosaic walls dark blue to show what they thought of the spottiness, and filled the well with a coarsely detailed hardwood screen.
At ground level the entrances for the publice and restanrant customers are covered by a wide simple coiling doted with lights which is vers welcoming. The entrance to the. restaurant is excellent in its simplieity and quality 13, quitc superior to the detailing of the entrance to the public

> 7. 8 Theo general viru's of "pen obserintion deck: illustrating different kinds of wrill tile and criling trertmemt
plat forms.
'This inconsistency extends to the four-storey base building which broadly follows the massing of surrounding terraces. The modelling and treat ment of the main building has been carefully considered (although the validity of the solid pancls 'floating' in the general wall surface can be questioned) 14. while links to the existing building and other subsidiary buildings are banal and fussily detailed to the point of being overworked 15. An exception to this is a large stone extension in Cleveland Mews. finely designed in a good factory tradition 16 and probably the best part of the lower building complex, its nobility being very suitable for the uniqueness and size of the tower above.

MECHANIGAL 8ERVICE8

The gro tower is divided into two separate sections-the public rooms and the apparatus section. Plant serving the public rooms is located in a roof level plant room.
Plant equipment serving the apparatus section of the tower is located in the low level plant rooms comprising three levels below the apparatus floors.

Public section

The restaurant and cocktail bar are fully air-conditioned by. the circulation of ducted air. The system incorporates a direct expansion air cooling plant having a loading of 20 ton refrigeration. The associated air heaters are electrically operated.
Conditioned air is recirculated from restaurant and cocktail har. The fresh air intake represents 31 per cent of the total fim capacity of $6,111010 \mathrm{ft}$ min. Fxtraction of a corresponding quantity of vitiated air lakes place via the servery.
The fresh air serving the plant is cleaned by passage through a high efficiency filter, preceded by a disposable fabric

9
circular building. Tlur hieln. qualit!g of drecailinge amd finishl of dome amol wimdom frothes comerrasts will llicil af ther cu iling Jimish

10 Tiling al whecremsion
 spotty effect. Timiber bulustors jill tlie oereal staiterase alleaft 'tull rise througl' t")
restrarranl and bar levels 11 . Magnificemt ripure are reffected in ther mirrour wealls "f the core cand cistuatl! e.rpunel ther small spmecre: all
wher hard surfaces are diark blue, was are trable cloths and corpel. llie latlor hariolg ot lime preftern of prose refice red

12
13
12 All fitments, such ass cloakroom counter, are moulded in red plastic sheet and many angles are curved to give, quite successfully, interest to the smmell spaces 13 Detailing of restaurant entrance at ground level reflects an appropriate gaiety, mainly through the character of the lettering and the continuudly revolving red star motif
14 The mezzanine, as seen from Howland Street, is well handled and the base building fits in well with surrounding buildings. The solid wall panels strike the one superficial note in an otherwise straightforward treatment
15 Link (right) to existing Museum exchange is quite out of character with rest of building: the differing scales and various external treatments are distressingly obvious
16 The finely detuiled buse building has a simple treatment in scale with tower above

15

filter.
Public areas other than the restaurant and cocktail bar are ventilated by plenum plant without air cooling facility. Background heating to the public rooms is by direct electric heating wall panels.
Hot water supply to the kitchen and lavatories is obtained from local electric water heaters comnected to the (ipo main electric supply.
A comprehensive layout of cooking equipment is provided and all heat requirements for this are met by electricity. The kitchen is ventilated by means of an axial flow extract fan of $8.000 \mathrm{cu} \mathrm{ft} / \mathrm{min}$ rating in a store next the kitchen. drawing air from extract hoods fitted over the cooking equipment. The extract discharges through the side of the structure above the kitchen in a position adjacent to the extract serving the public areas. Baffle plates are located external to the discharge, and spaced a short distance from it. to guard against wind conditions adversely affecting the air discharge. Air inlet to the kitchen is drawn through a high level hinged window; it is unheated.

Apmernlus scction

The apparatus section of the tower is without a central system of heating. as enough heat is generated from the electrical apparatus to maintain the required minimum temperatures; these are about 10 deg f above ambient in the unattended automatic sections-local electric heaters are provided to boost the temperature to $60^{\circ} \mathrm{F}-65^{\circ} \mathrm{F}$ when plant is being installed or maintained.
The tower was planned to allow for fort y years' growth in use, which is likely to result eventually in a heat dissipation within the apparatus section of about 250 kW . However a heat loss of up to 45 kW may occur at times on a single one of the thirteen apparat us floors. In addition, the solar heat gain per floor is estimated at $10 \cdot 5 \mathrm{~kW}$.
Solar heat gain is being reduced by the provision of double glazing on the south. south-east and south-west walls of the tower; the outor leaf is a heat absorbing glass. Between the glazing is located an arrangement of vertical adjustable aluminium sun visors of aerofoil section.
The apparatus section is ventilated by means of a plenum ventilation system embodying inlet and extract. The air supply is unheated. the heat gains from the apparatus within the tower being adequate to compensate for winter heat losses.
Electrostatic air filters are provided at the air inletpreceded by disposable fabric pre-filters. An unusual feature of the filtration is an arrangement whereby automatic washing of the electrostatic filters is carried out from a remote control cubicle.
It is anticipated that the eventual increase in heat gains from further electrical apparatus which remains to be added will so increase heat gains that cooling provision must then be added to the plenum system now installed. To this end, provision has been made within the low level plant rooms and ventilation ducting for the future installation of compressor plant of 130 ton capacity refrigeration, direct expansion type air coolers and condensers.
The plenum plant is divided into two separate units of equal duty, each rated at $31.000 \mathrm{cu} \mathrm{ft} / \mathrm{min}$ and operating at high velocity. The two plants are interlinked. so that in the event of failure of one unit, a reduced supply of ventilation can be maintained to both sections. A proportion of the air is recirculated.
The space available for ventilation trunking is limited, an'l therefore the main air flow moves at the high velocity of $3.000 \mathrm{ft} / \mathrm{min}$. Attenuator junction boxes lower the air velocity to about $1,000 \mathrm{ft} / \mathrm{min}$ at the horizontal floor

An authoritative guide

"Synthetic Resins in the Building Industry"

If you're engaged in the building or allied industries, you will find this guide invaluable. It explains the whys and wherefores of synthetic resins and adhesives, with details of CIBA glues and their uses. Much information on wood gluing techniques is included, fully illustrated, ranging from joinery to the fabrication of large structural framework in laminated timber. Other sections deal with wood chipboard manufacture and the bonding of decorative laminated plastics. Finally, there is a section describing epoxy resins and their increasing uses as adhesives for nonporous materials, as surface coatings and reinforcing agents. Send for a copy today.

ToCIBA (A.R.L.) LTD., Duxford, Cambridge Please send me publication
"SYNTHETIC RESINS IN IHE BUILDING INDUSTRY

NAME

ADDRESS

17
ventilation off-takes.
Particular attention was paid to reducing the sound level of the system to within aeceptable limits, as the fans themselves are operating at a high noise level. To this end, silencers are fitted to all axial flow fans; centrifugal fans are mounted on frames supported on anti-vibration mountings.
'The design noise criteria for the restaurant and cocktail bar are s(40* and in sundry apparatus scetions nc45. The noise emanating from the building has been suppressed to limit it at the pavement level to nc25.
In view of the extreme limitation of plant space, fans and motors are not generally provided in duplicate and the fabric air filters are not of the automatically actuated type. However the electric supply to the fan plants is safeguarded by a stand-by electric supply.
A separate ventilation plant serves the lavatories, all of which are mechanically ventilated.
Independent extract ventilation plants are fitted to the buttery room floors. Air supply for these is drawn from the contral supply plant, but all extract from the battery rooms is discharged to atmosphere, as the air tends to be laden with sulphuric acid fumes which must not be recireulated through the huilding.
T'wo separate fan plants ate instulled to ventilate the low level plant rooms.
Water is olstained from the Motropolitan Water Board and a fully autopneumatic system including pumps in duplicate. pneumatic tank and compressor takes water from the main and delivers all domestic water through a pumping main to storage tanks at jouft above ground level.
'Io protect the board's main against back pressure that

[^0]

18
17 Enclosed public ricuin! getler!g showing ducting and grilles for plenum rentilation system. Photo taken during
construclion"
18 Typical appariotus foor shouring cramped comditions for equipment
would occur were reflux valves to stick in the open position a dead weight pressure relief valve and additional roflux valves have been inserted between the main and boosterl supplies.
Mains water for kitchen, restaurant. tea bar and drinking water points on other floors is taken direct from this pressurised main and, where necessary. pressure reducing valves are installed.
Domestic whter for all other purposes is supplied by the main high level storage tanks and two other intermediate break-pressure tanks each of 50 gal capacity situated at the $190 f$ and $320 f t$ levels. 'These tanks ensure that the maximum pressure on the fittings does not exceed looft.
Fire protection arrangements have been provided to the standards of the (ilc. Two systems of smoke detection are provided. one to each plenum plant. In the event of a smokicondition. an alarm sounds. the recireulating dampers arr closed. fresh air inlet is fully opened and extract is fully opened.
A fire damper is provided in the vertical trunk duct bet ween each floor. the damper being actuated by a fusible link deviee.
The dion tower is independent as regards servieres from the boiler plant and other serviecs provided for the Musemu telephone exchange noxt to it.

19 Plant room. lecrl B3. showing one of the main c.rtratt funs and ductuork

20 Main supply frul. Ierel B2. supported on frame on anti-ribrution manmtings

CONTRACTOR8

General: Peter Lind \& Co Ltd. Subcontractors and suppliers: Reinforcing rods for tower: Stanton \& Staveley Sales Ltcl. Reinforcement to Museum telpphone exchange extension: The Square Grip Keinforcement C'o Ltdl. Concrete aggregates: Hall \& C'o Ltdl. Fletton bricks: Erith \& Co Ltdl. Sundry steeluork: A. A. Thornton (Teddington) Ltd. Cement: Tunnel PortlandC'ement C'o Ltd. Lightning conductors: R. C'. C'utting \& C'o Ltd. Polystyrene: Jablo Plastics Industries Ltd. Laying asphalt: General Asphalte Co Ltd. Fixinys: Rawlplug C'o Ltd. Granite sills and copin!!: Nine Elms Stone Masonry Works Ltd. Exposed aggregate cladding panels and concrete blocks: Cooper Wettern \& C'o Ltdl. Safety helmets: Malcolm C'ampbell (Ilastics) Ltd. Non-ferrous fixings: Harris \& Edgar Ltdl. Aluminium and stainless steel windous and curlain uallin! to touer: Henry Hope \& Sons Ltd. Heating. hot water, !as and ventilation services: C'. J. Jefferies Ltcl. v.form concrete shuttering, safety helmets: Acrow (Engineers) Ltcl. Cast iron pipeuork and plumbing: Smeaton \& Sons Ltdl. Steel stairuay: Frederick Braby \& C'o Ltd. Steel scaffolelin!!: London \& Midland Steel Scaffolding C'o Ltd. Sprinkler system: Atlas Sprinkler Co Ltd. Tower crane for building telephone exchan!!e extension: Liebherr (Ireland) Ltdl. Windous and rooflights: J. A. King \& C'o Ltd. Ironmonyery: Alfred G. Roberts Ltdl. Safety nets to tower:

20
Lowlon Spinning Co Ltal. Ruberoill roofing: The Ruberoid Co Lttl. Paintin!: Arnold Sharrocks Ltd. Joinery: J. C. Richards (Wiood. workers) Ltal. Lightueight concrete screeding: Isomete ('o Ltal. Plratering: Humphris \& Bailey Ltdl. Cable trunkin!! and boses: Salamandre Metal Works Ltd. Mosuic work: Marriott \& Price Ltd. Windoue cleaning gear to telephone exrhange: Paltmers Travelling Cradle \& Scaffold C'o Ltd. Quarry tiling: Corrosion Terhnical Services Ltcl. Sanitar!/ fitfings: W. N. Froy \& Sons Ltal. Sundry glazing und domelights: James Clark \& Eaton Ltd. Balustraling and steel ladders: Clark Hunt \& Co Ltd. Timber doors, joinery: Walter Lawrence \& Son Ltcl. Steel fire resisting doors: Durasteel Ltd. Elevated flooring: Archibald Low \& Sons Ltdl. Steel partitioning: Roneo Ltal. Plastic covered slidinglfolding doors: Horsley, Smith \& Co (Hayes) Ltcl. Steel rolling shutters: Dennison Kétt \& Co Ltdl. Cemglaze: C'ement Glaze Ltd. Terrazzo tiling: St James Terrazzo Tile Co. Composition block flooring: Granwood Stonewood Lttl. Restaurant revolving floor: Ransomes \& Rapier Ltcl. Aluminium false ceilings: Gardiner Sons \& Co Ltd. Timber shuttering fixings: John Lỵnn \& Co Ltd. Climbing Crane to toucr: Climbing Cranes Ltd. Passenger hoist to tower during construction: Wickham Engineering C'o Ltd. Ceilings: Anderson Construction C'o Ltal. Fireproof partitions: Unilock l'artitions Ltd. Basement uralling: Impresa di Costruzione Opave Specializ. zate (Icos). Reinforcement for basement: The Rom River Co Ltd. Concrete joint waterstops: Tretol-Servicised Ltal. Prestressing wire for buse of tower reinforcement: British Ropres Ltal. Anchorages for prestressing wire reinforcement to tower base: P. S. C. Equipment Ltdl. Tricosal admi.rture to concrete: A. A. Byrd \& Co Ltdl. Timber shuttering for concrete: John Lenanton \& Non Ltal. George E. Gray Ltal. Insulnting: Newalls Insulation C'o Ltd. Flooring: Semtex Ltdl, Lionweld Ltd. Fire ertinguishers: Nu.Swift Ltd. Steeluork: T. W. Palmer \& ('o (Merton Abbey) Ltd, Wm Jones Ltcl. Hoisting blocks: Fcllows Bros Ltd. Tiling: Harradene Rouse \& Co Ltd. Shuttering: Shutter Contractors L.td. Lifts: A. C. E. Machinery Ltd. Partitioning: Sankey-Sheldon Ltd. Protectice clothing: Downham Supplies (Contractors Tools) Ltd.

[^0]: - The moise criteria vale derivew from nc curves which are drawn on axes of silliul-presisure level against frequeucy hand.

